Toggle light / dark theme

Why not add a light switch instead?

This month, a team from the University of California, San Francisco (UCSF) reimagined CRISPR to do just that. Rather than directly acting on genes—irrevocably dicing away or swapping genetic letters— the new CRISPR variant targets the biological machinery that naturally turns genes on or off.

Translation? CRISPR can now “flip a light switch” to control genes—without ever touching them directly. It gets better. The new tool, CRISPRoff, can cause a gene to stay silent for hundreds of generations, even when its host cells morph from stem cells into more mature cells, such as neurons. Once the “sleeping beauty” genes are ready to wake up, a complementary tool, CRISPRon, flips the light switch back on.

All brains shrink with age, and the dominant view has been that more education slows the rate of shrinking. However, the evidence has been inconclusive because studies have not been able to track the rate of change over time. Until now.

Measured brain shrinkage over time

A team of researchers measured by measuring the volume of the cortical mantle and hippocampus regions of the brain, in MRI scans from more than 2000 participants in the Lifebrain and UK biobanks. These areas of the brain are prone to shrinkage over time, as a natural part of aging. Participants’ brains were scanned up to three times over an 11 year period, in what is known as a ‘longitudinal’ study.

The study also linked COVID-19 to a 60% to 97% increased rate of preterm birth, and— in infected women with a fever and shortness of breath—to a fivefold increase in neonatal complications such as immature lungs, brain damage, and eye disorders. About 13% of babies tested positive for the virus, and cesarean delivery was linked to a higher risk of transmission. Breastfeeding didn’t appear to transmit the virus—a small bit of good news.


New study bolsters the case for vaccinating pregnant women.

The work adds to a growing body of evidence suggesting that schizophrenia and certain other neuropsychiatric conditions may be in part neuroinflammatory disorders.


Summary: People with schizophrenia and other neuropsychiatric disorders may have a more permissive blood-brain barrier which allows the immune system to become more actively involved in the central nervous system. The resulting inflammation may contribute to the clinical manifestation of psychosis-like symptoms.

Source: University of Pennsylvania

Like a stern bodyguard for the central nervous sytem, the blood-brain barrier keeps out anything that could lead to disease and dangerous inflammation–at least when all is functioning normally.

In this study we aimed to generate mouse antibodies against epitopes found on NPCs. We isolated one antibody (NSC-6) and characterized it in detail. Mass spectrometry using human hippocampal tissue revealed the identity of the recognized antigen as BASP1, a signaling protein that plays a key role in neurite outgrowth and plasticity14,15,16,17,18,19, but here, we demonstrate that it might be utilized as a marker of NSCs in the adult brain.

Similar approaches to developing antibodies against mouse embryonic stem cells have been attempted in the past utilizing mice46,47 and rabbits48. Major drawbacks in mice include immune tolerance to mouse embryonic stem cell surface antigens leading to low antibody production, which could be overcome by immunizing rabbits instead. Regardless of the animal used as a host, a significant number of antibodies are typically generated against intracellular epitopes when animals are immunized with whole cells as was observed in our study.

We found that NSC-6-labeled BASP1 localizes to all radial glia at the E12 stage of brain development, while postnatally, it restricts to the neurogenic areas of the mouse brain but not the cortex. This expression pattern contrasts previous study using DAB-based immunolabeling for NAP-22 (BASP1 alias) in the adult rat brain, which demonstrated robust labeling of cerebral cortex27. While we do not know the basis of this difference in immunolabeling of cortex, possibilities include species variations between rat and mouse expression of BASP1, or differences in epitope recognition between the two antibodies used that could yield distinct patterns of immunoreactivity. Indeed, the two commercial BASP1 polyclonal antibodies did not immunolabel NSCs and in general, exhibited poor staining of the mouse brain tissue.

Researchers at the National Institute of Standards and Technology are proposing a new approach to large-scale artificial intelligence (AI) by relying on the integration of photonic components with superconducting electronics.

Previous approaches to achieving general intelligence in artificial intelligence systems have focused on conventional silicon microelectronics paired with light. There are major barriers to this approach, however. There are many physical and practical limitations with the fabrication of silicon chips with electronic and photonic elements.

General intelligence is “the ability to assimilate knowledge across content categories and to use that information to form a coherent representation of the world.” It involves the integration of various sources of information, and it must result in a coherent and adaptive model of the world. The design and hardware construction for general intelligence requires the application of principles of neuroscience and very-large-scale integration.

Summary: Betaine, a dietary supplement extracted from sweet beets, reduces behavioral symptoms of schizophrenia in mice with genetic risk factors for the disorder. The supplement may help protect proteins that build the cellular skeletons of neurons.

Source: University of Tokyo.

A simple dietary supplement reduces behavioral symptoms in mice with a genetic mutation that causes schizophrenia. After additional experiments, including visualizing the fluorescently stained dancing edge of immature brain cells, researchers concluded that the supplement likely protects proteins that build neurons’ cellular skeletons.