Toggle light / dark theme

In the brains of people without schizophrenia, concepts are organized into specific semantic domains and are globally connected, enabling coherent thought and speech.

In contrast, the researchers reported that the semantic networks of people with schizophrenia were disorganized and randomized. These impairments in semantics and associations contribute to delusion and incoherent speech.

Researchers at UC Davis are the first to report how a specific type of brain cells, known as oligodendrocyte-lineage cells, transfer cell material to neurons in the mouse brain. Their work provides evidence of a coordinated nuclear interaction between these cells and neurons. The study was published today in the Journal of Experimental Medicine.

“This novel concept of material transfer to neurons opens new possibilities for understanding brain maturation and finding treatments for neurological conditions, such as Alzheimer’s disease, cerebral palsy, Parkinson’s and Huntington’s disease,” said corresponding author Olga Chechneva is an assistant project scientist at UC Davis Department of Biochemistry and Molecular Medicine and independent principal investigator in the Institute for Pediatric Regenerative Medicine at Shriners Children’s Northern California.

Oligodendrocyte-lineage , also called oligodendroglia, are a type of glial cells found in the central nervous system. From birth onward, these glial cells arise to support neural circuit maturation. They are mostly known for their role in myelination—the formation of the insulating myelin sheath around nerve axons.

Summary: Two distinct networks in the frontal and temporal lobes become activated and work in unison to integrate the meaning of words in order to obtain a higher-order and more complex meaning when reading.

Source: UT Houston.

When a person reads a sentence, two distinct networks in the brain are activated, working together to integrate the meanings of the individual words to obtain more complex, higher-order meaning, according to a study at UTHealth Houston.

This post is also available in: he עברית (Hebrew)

Researchers from John Hopkins University together with Dr. Brett Kagan, chief scientist at Cortical Labs in Melbourne, have recently led the development of the DishBrain project, in which human cells in a petri dish learnt to play Pong.

The team claims that biological computers could surpass today’s electronic computers for certain applications while using a small fraction of the electricity required by today’s computers and server farms.

Neuroscientists at MIT have discovered a way to potentially reverse neurodegeneration and other issues related to Alzheimer’s disease, according to a news release from the school.

Researchers, experimenting on mice, found that interfering with an enzyme that is typically overactive in the brains of people with Alzheimer’s can reverse the degeneration in the brain.

Human decision-making is relevant for concept formation and cognitive illusions. Cognitive illusions can be explained by quantum probability, while the reason for introducing quantum mechanics is based on ad hoc bounded rationality (BR). Concept formation can be explained in a set-theoretic way, although such explanations have not been extended to cognitive illusions. We naturally expand the idea of BR to incomplete BR and introduce the key notion of nonlocality in cognition without any attempts on quantum theory. We define incomplete bounded rationality and nonlocality as a binary relation, construct a lattice from the relation by using a rough-set technique, and define probability in concept formation. By using probability defined in concept formation, we describe various cognitive illusions, such as the guppy effect, conjunction fallacy, order effect, and so on.

One evening, some 40 years ago, I got lost in time. I was at a performance of Schubert’s String Quintet in C major. During the second movement I had the unnerving feeling that time was literally grinding to a halt. The sensation was powerful, visceral, overwhelming. It was a life-changing moment, or, as it felt at the time, a life-changing eon.

It has been my goal ever since to compose music that usurps the perceived flow of time and commandeers the sense of how time passes. Although I’ve learned to manipulate subjective time, I still stand in awe of Schubert’s unparalleled power. Nearly two centuries ago, the composer anticipated the neurological underpinnings of time perception that science has underscored in the past few decades.

The human brain, we have learned, adjusts and recalibrates temporal perception. Our ability to encode and decode sequential information, to integrate and segregate simultaneous signals, is fundamental to human survival. It allows us to find our place in, and navigate, our physical world. But music also demonstrates that time perception is inherently subjective—and an integral part of our lives. “For the time element in music is single,” wrote Thomas Mann in his novel, The Magic Mountain. “Into a section of mortal time music pours itself, thereby inexpressibly enhancing and ennobling what it fills.”

Reversing schizophrenia with gene therapy year 2023.


Copy-number variations in the ARHGAP10 gene encoding Rho GTPase–activating protein 10 are associated with schizophrenia. Model mice (Arhgap10 S490P/NHEJ mice) that carry “double-hit” mutations in the Arhgap10 gene mimic the schizophrenia in a Japanese patient, exhibiting altered spine density, methamphetamine-induced cognitive dysfunction, and activation of RhoA/Rho-kinase signaling. However, it remains unclear whether the activation of RhoA/Rho-kinase signaling due to schizophrenia-associated Arhgap10 mutations causes the phenotypes of these model mice. Here, we investigated the effects of fasudil, a brain permeable Rho-kinase inhibitor, on altered spine density in the medial prefrontal cortex (mPFC) and on methamphetamine-induced cognitive impairment in a touchscreen‑based visual discrimination task in Arhgap10 S490P/NHEJ mice. Fasudil (20 mg/kg, intraperitoneal) suppressed the increased phosphorylation of myosin phosphatase–targeting subunit 1, a substrate of Rho-kinase, in the striatum and mPFC of Arhgap10 S490P/NHEJ mice. In addition, daily oral administration of fasudil (20 mg/kg/day) for 7 days ameliorated the reduced spine density of layer 2/3 pyramidal neurons in the mPFC. Moreover, fasudil (3–20 mg/kg, intraperitoneal) rescued the methamphetamine (0.3 mg/kg)-induced cognitive impairment of visual discrimination in Arhgap10 S490P/NHEJ mice. Our results suggest that Rho-kinase plays significant roles in the neuropathological changes in spine morphology and in the vulnerability of cognition to methamphetamine in mice with schizophrenia-associated Arhgap10 mutations.

We flew out to Salt Lake City, Utah, to get an exclusive look at the company behind some of the most advanced implantable neurotechnologies, Blackrock Neurotech. Brain implants are here, and they’re becoming more and more advanced every day. The Utah Array and Neuroport system allows for high-quality data recording and stimulation. It has the most in-subject research hours of any brain-computer interface on the market and has been a part of the most advanced BCIs since 2004, inspiring hope in persons with movement disorders. We also saw their newly announced Neuralace interface debuted in November 2022. Learn what it takes to work at a company at the forefront of brain-computer interface development.

Thanks to Blackrock Neurotech for sponsoring this video. The opinions expressed in this video are that of The BCI Guys and should be taken as such.

Blackrock Neurotech’s Website: https://blackrockneurotech.com/

By the way, Blackrock Neurotech is not affiliated with the BlackRock financial firm — this is a frequent question.

——–ABOUT US:——-

Harrison and Colin (The BCI Guys) are neurotech researchers and science communicators dedicated to creating a brain-controlled future! Neurotechnology and brain-computer interfaces are devices that allow users to control machines with their thoughts and interact with technology in new ways. This revolutionary technology will change life as we know it and soon will be as common as the touchscreen on your smartphone. Join us in learning about the brain-controlled future!