Toggle light / dark theme

Breakthrough from REMspace: First Ever Communication Between People in Dreams

REDWOOD CITY, Calif.—()—Researchers at REMspace, a California-based startup, have achieved a historic milestone, demonstrating that lucid dreams could unlock new dimensions of communication and humanity’s potential. Using specially designed equipment, two individuals successfully induced lucid dreams and exchanged a simple message.

Watch the experiment here.

Lucid dreams occur when a person is aware they are dreaming while still in the dream state. This phenomenon happens during REM sleep and has numerous potential applications, from solving physiological problems to learning new skills. In earlier research, REMspace demonstrated that facial electromyography sensors could decode specific sounds made in dreams. This led to the development of Remmyo, a dream language detectable through sensitive sensors.

Cameron County Preparing For Possible SpaceX Launch

Scientists have used gene-editing techniques to boost the repair of nerve cells damaged in multiple sclerosis, a study shows. The innovative method, which was tested in mice, supports the development of cells that can repair the protective myelin coating around nerves, restoring their ability to conduct messages to the brain.

The findings, now published in Nature Communications, offer a potential route for future treatments to stop disability progression, experts say.

Our bodies have the ability to repair myelin, but in multiple sclerosis (MS), and as we age, this becomes less effective. There are currently no treatments to boost this process.

Anil Seth’s “Being You? A New Science of Consciousness”

Anil Seth, Neuroscientist, Author, and Public Speaker who has pioneered research into the brain basis of consciousness for more than 20 years.

Moderated by Susan Schneider, Ph.D., William F Dietrich Distinguished Professor of Philosophy in the Dorothy F. Schmidt College of Arts and Letters; Member of the Brain Institute. Schneider is founding director of the Center for the Future Mind.

What does it mean to \.

The Consciousness Explosion: A Mindful Human’s Guide to the Coming Technological and Experiential Singularity

The pace of engineering and science is speeding up, rapidly leading us toward a “Technological Singularity” — a point in time when superintelligent machines achieve and improve so much so fast, traditional humans can no longer operate at the forefront. However, if all goes well, human beings may still flourish greatly in their own ways in this unprecedented era.

If humanity is going to not only survive but prosper as the Singularity unfolds, we will need to understand that the Technological Singularity is an Experiential Singularity as well, and rapidly evolve not only our technology but our level of compassion, ethics and consciousness.

The aim of The Consciousness Explosion is to help curious and open-minded readers wrap their brains around these dramatic emerging changes– and empower readers with tools to cope and thrive as they unfold.

How Brain Cells Identify Smells and Related Images

Summary: A recent study reveals that specific brain cells respond not only to smells but also to images and written words related to those scents, providing deeper insight into human odor perception. Researchers found that neurons in the olfactory cortex and other brain regions, like the hippocampus and amygdala, distinguish between different smells and associate them with visual cues.

This research, using data from epilepsy patients, bridges a gap between animal and human studies on olfactory processing. Remarkably, individual neurons responded to scent, image, and word, suggesting that smell processing integrates visual and semantic information early on. These findings could lead to future innovations in “olfactory aids.” The study emphasizes the interconnected nature of smell and visual memory in the human brain.

Parkinson’s Discovery Suggests We Already Have an FDA-Approved Treatment

Researchers have discovered how a cell surface protein called Aplp1 can play a role in spreading material responsible for Parkinson’s disease from cell-to-cell in the brain.

Promisingly, an FDA-approved cancer drug that targets another protein called Lag3 – which interacts with Aplp1 – blocks the spread in mice, suggesting a potential therapy may already exist.

In a recent paper, an international team of scientists describes how the two proteins work together to help harmful alpha-synuclein protein clumps get into brain cells.

Landmark Study Identifies Potential New Way To Treat Depression and Anxiety

Researchers highlight LXRβ as a potential target for treating depression, anxiety, and autism. While promising, further studies are needed to confirm its effectiveness in humans.

In a state-of-the-art Bench to Bedside review published in the journal Brain Medicine (Genomic Press), Dr. Xiaoyu Song from the University of Houston and Professor Jan-Åke Gustafsson from Sweden’s Karolinska Institute explore the therapeutic potential of liver X receptor beta (LXRβ) in treating depression and anxiety. Their comprehensive analysis represents a major advancement in understanding the molecular mechanisms underlying mental health disorders, with the potential to transform future treatment approaches.

LXRβ, a nuclear receptor initially known for its role in cholesterol metabolism and inflammation, is now emerging as a crucial player in neuroscience and psychiatry. The review synthesizes recent breakthroughs in understanding LXRβ’s regulation and function in behaviors relevant to depression and anxiety, derived from studies using animal models that capture specific features of these disorders.

Uncovering Genetic Links to Psychiatric Disorders in the Brain

Summary: Scientists have identified how genetic variants influence the risk of neurological and psychiatric disorders, including schizophrenia and autism. Using live neural cells and DNA sequencing, researchers discovered thousands of “non-coding” genetic variants with context-dependent functions, activated during brain development.

These variants act like switches, turning genes on or off depending on cellular pathways. This research offers new insights into the biological mechanisms behind psychiatric disorders and could lead to personalized treatments based on genetic profiles.

/* */