Toggle light / dark theme

Can we connect human brains together? What are the limits of what we can do with our brain? Is BrainNet our future?
In science fiction movies, scientists’ brains are downloaded into computers and criminal brains are connected to the Internet. Interesting, but how does it work in real life?
Original title: The greedy brain.
Scientific journalist Rob van Hattum wondered what information we can truly get from our brain and came across an extraordinary scientific experience.
An experiment where the brains of two rats were directly connected: one rat was in the United States and the other rat was in Brazil. They could influence the brain of the other directly. Miguel Nicolelis is the Brazilian neurologist who conducted this experiment. In his book ‘Beyond Boundaries’ he describes his special experiences in detail and predicts that it should be possible to create a kind of BrainNet.
For Backlight, Rob van Hattum went to Sao Paulo and also visited all Dutch neuroscientists, looking for what the future holds for our brain. He connected his own brain to computers and let it completely be scanned, searching for the limits of reading out the brain.
Originally broadcasted by VPRO in 2014.
© VPRO Backlight July 2014

On VPRO broadcast you will find nonfiction videos with English subtitles, French subtitles and Spanish subtitles, such as documentaries, short interviews and documentary series.
VPRO Documentary publishes one new subtitled documentary about current affairs, finance, sustainability, climate change or politics every week. We research subjects like politics, world economy, society and science with experts and try to grasp the essence of prominent trends and developments.

Visit additional youtube channels bij VPRO broadcast:
VPRO Broadcast, all international VPRO programs: https://www.youtube.com/VPRObroadcast.
VPRO DOK, German only documentaries: https://www.youtube.com/channel/UCBi0VEPANmiT5zOoGvCi8Sg.
VPRO Metropolis, remarkable stories from all over the world: https://www.youtube.com/user/VPROmetropolis.
VPRO World Stories, the travel series of VPRO: https://www.youtube.com/VPROworldstories.
VPRO Extra, additional footage and one off’s: https://www.youtube.com/channel/UCTLrhK07g6LP-JtT0VVE56A
www.VPRObroadcast.com.

Credits:

More than 60 scientists work to convert research into practical applications too.

The government of China has provided funding to set up a leading laboratory to study brain-machine interfaces, much like Elon Musk’s Neuralink has been working on. The recently inaugurated Sixth Haihe Laboratory in the northeast port city of Tianjin to “drive innovation and create new areas for economic growth”, the South China Morning Post.


Chinese lab to work on brain-machine interfaces

Apart from Neuralink, research institutes in the U.S., such as the University of California, Berkeley, and the Massachusetts Institute of Technology, have led the development of technology in brain-machine interface for many years.

Researchers in New York developed a virtual reality maze for mice in an attempt to demystify a question that’s been plaguing neuroscientists for decades: How are long-term memories stored?

What they found surprised them. After forming in the hippocampus, a curved structure that lies deep within the brain, the mice’s memories were actually rooted through what’s called the anterior thalamus, an area of the brain that scientists haven’t typically associated with memory processing at all.

“The thalamus being a clear winner here was very interesting for us, and unexpected,” said Priya Rajasethupathy, an associate professor at Rockefeller University and one of the coauthors of a peer-reviewed study published in the journal Cell this week. The thalamus “has often been thought of as a sensory relay, not very cognitive, not very important in memory.”

IN THE NEAR FUTURE, we should anticipate certain technological developments that will forever change our world. For instance, today’s text-based ChatGPT will evolve to give rise to personal “conversational AI” assistants installed in smart glasses and contact lenses that will gradually phase out smartphones. Technological advances in fields such as AI, AR/VR, bionics, and cybernetics, will eventually lead to “generative AI”-powered immersive neurotechnology that enables you to create virtual environments and holographic messages directly from your thoughts, with your imagination serving as the “prompt engineer.” What will happen when everyone constantly broadcasts their mind?

#SelfTranscendence #metaverse #ConversationalAI #GenerativeAI #ChatGPT #SimulationSingularity #SyntellectEmergence #GlobalMind #MindUploading #CyberneticImmortality #SimulatedMultiverse #TeleologicalEvolution #ExperientialRealism #ConsciousMind


Can the pursuit of experience lead to true enlightenment? Are we edging towards Experiential Nirvana on a civilizational level despite certain turbulent events?

The ability to store and retrieve learned information over prolonged periods of time is an essential and intriguing property of the brain. Insight into the neurobiological mechanisms that underlie memory consolidation is of utmost importance for our understanding of memory persistence and how this is affected in memory disorders. Recent evidence indicates that a given memory is encoded by sparsely distributed neurons that become highly activated during learning, so-called engram cells. Research by us and others confirms the persistent nature of cortical engram cells by showing that these neurons are required for memory expression up to at least 1 month after they were activated during learning. Strengthened synaptic connectivity between engram cells is thought to ensure reactivation of the engram cell network during retrieval. However, given the continuous integration of new information into existing neuronal circuits and the relatively rapid turnover rate of synaptic proteins, it is unclear whether a lasting learning-induced increase in synaptic connectivity is mediated by stable synapses or by continuous dynamic turnover of synapses of the engram cell network. Here, we first discuss evidence for the persistence of engram cells and memory-relevant adaptations in synaptic plasticity, and then propose models of synaptic adaptations and molecular mechanisms that may support memory persistence through the maintenance of enhanced synaptic connectivity within an engram cell network.

Our memories define who we are, help us make decisions and guide our behavior. The ability to effectively encode, store and retrieve information is therefore an essential feature of life. Although the recollection of most experiences fades with time, certain memories are retained for many years or even a lifetime. How the brain is able to process and persistently store learned information has been a topic of intense research for a long time and great progress has been made in recent years toward a better understanding of the mechanisms underlying memory persistence.

Memory formation is initiated by the integration of external and interoceptive sensory stimuli in neuronal circuits, forming a cohesive representation of a specific event. Subsequently, the neurons involved are thought to undergo physical changes that enable retrieval of the learned information. The physical representation of experience-driven changes in the brain is collectively referred to as a memory engram (Box 1), a term that gained popularity in recent years (Josselyn et al., 2015), but that was first introduced by the German scientist Richard Semon in the early 20th century (Semon, 1911). Learning-induced changes do not occur globally or randomly within memory-relevant brain regions. Instead, accumulating evidence indicates that sparse ensembles of neurons become highly activated during learning and act as a substrate for the storage of a memory engram (Whitaker and Hope, 2018; Josselyn and Tonegawa, 2020).

The neuroscience study opens new avenues for understanding the brain’s role in learning and education. As researchers uncover more about the mechanisms underlying acquiring knowledge, educators can implement evidence-based strategies to enhance student outcomes. This blog post delves into the fascinating world of neuroscience, explores how the brain learns, and examines various learning theories and strategies informed by neuroscientific research.

Understanding the Basics of Neuroscience

Neuroscience refers to studying the nervous system, focusing on its role in behavior, cognition, and learning. The human brain, a complex organ, contains billions of neurons that transmit information through electrical and chemical signals. These neurons form networks, and the brain’s organization into different regions allows it to carry out specific functions.

(Visit: http://www.uctv.tv/)
1:39 — Understanding Primate Brain Development Using Stem Cell Systems — Rick Livesey.
18:58 — Human-Specific Genes and Neocortex Expansion in Development and Evolution — Wieland Huttner.
37:17 — Cellular and Molecular Features of Human Brain Expansion and Evolution — Arnold Kriegstein.

The human brain is one of, if not the most important factor that distinguishes our species from all others. Three experts explore the use of stem cells in understanding the primate brain, genes that guided the evolution of the human brain, and the features that enabled the expansion of human neural characteristics. Recorded on 09/29/2017. Series: “CARTA — Center for Academic Research and Training in Anthropogeny” [11/2017] [Show ID: 32927].

Forget about life-work-balance. A new generation of drugs promises unlimited increases in productivity without the need for rest or sleep.

“Brain doping” is the latest trend among high flyers. Pharmaceutical companies are developing pills that increase mental capability, stimulate desire, and heighten mood. A meaningful life full of happiness and success – without side effects.

The industry hopes for fantastic profits if the pretty pills become socially acceptable. Are we at the dawn of a new era, in which cosmetic neurology is an everyday phenomenon?

This documentary was first released in 2011.