Toggle light / dark theme

An international team led by investigators at McLean Hospital has analyzed the genes expressed in approximately 575,000 individual cells from the brains of people with and without post-traumatic stress and major depressive disorders (PTSD and MDD), revealing new insights into the mechanisms behind the brain’s stress response in these conditions.

The findings, which are published in The American Journal of Psychiatry, could lead to novel markers of PTSD and MDD and well as new therapeutic targets.

Because studies have implicated the (DLPFC) region of the brain in PTSD and MDD, the scientists compared the expressed in cells in DLPFC samples collected postmortem from 11 individuals with PTSD, 10 with MDD, and 11 without either of these conditions with a replication dataset half the size. The researchers detected which genes were expressed by which cells—including eight different types of cells—through a technique called single-cell RNA sequencing.

Scientists at the University of Colorado Anschutz Medical Campus have discovered what they believe to be the central mechanism behind cognitive decline associated with normal aging.

“The mechanism involves the mis-regulation of a brain protein known as CaMKII which is crucial for memory and learning,” said the study’s co-senior author Ulli Bayer, PhD, professor of pharmacology at the University of Colorado School of Medicine. “This study directly suggests specific pharmacological treatment strategies.”

The study was published today in the journal ‘Science Signaling.’

Alfred North Whitehead’s Process Philosophy, the Mystery of Consciousness and the Mind-Body Problem (2016)
.
Compilation by Michael Schramm.
Background Music by Michael Schramm.
.
Speakers & Quotations:
Charles Birch, Susan Blackmore, David J. Chalmers, Daniel C. Dennett, Freeman Dyson, David Ray Griffin, Charles Hartshorne, Nicholas Humphrey, Christof Koch, Colin McGinn, Thomas Nagel, Karl R. Popper, John R. Searle, Rupert Sheldrake, Galen Strawson, Alfred North Whitehead.

Tags:
panpsychism, consciousness, mind-body problem, process philosophy, process metaphysics, materialism, (property) dualism, quantum physics, indeterminism, free will.
.
I have uploaded the resource document again and added a new link. Thanks for the interest!
Resources (new link):
https://theology-ethics.uni-hohenheim.de/fileadmin/einrichtu…ources.pdf.
.

How can we increase our lifespan by over two decades?

In this video, we dive into a comprehensive study involving over 700,000 U.S. veterans that reveals the immense power of eight healthy lifestyle habits.

These habits are not only vital for your longevity but also key to enhancing your personal wellness and contributing to public health.

Cognitive dysfunction in aging is a major biomedical challenge. Whether treatment with klotho, a longevity factor, could enhance cognition in human-relevant models such as in nonhuman primates is unknown and represents a major knowledge gap in the path to therapeutics. We validated the rhesus form of the klotho protein in mice showing it increased synaptic plasticity and cognition. We then found that a single administration of low-dose, but not high-dose, klotho enhanced memory in aged nonhuman primates. Systemic low-dose klotho treatment may prove therapeutic in aging humans.

Scientists adding a human intelligence gene into monkeys — it’s the kind of thing you’d see in a movie like Rise of the Planet of the Apes. But Chinese researchers have done just that, improving the short-term memories of the monkeys in a study published in March 2019 in the Chinese journal National Science Review. While some experts downplayed the effects as minor, concerns linger over where the research may lead.

The goal of the work, led by geneticist Bing Su of Kunming Institute of Zoology, was to investigate how a gene linked to brain size, MCPH1, might contribute to the evolution of the organ in humans. All primates have some variation of this gene. However, compared with other primates, our brains are larger, more advanced and slower to develop; the researchers wondered whether differences that evolved in the human version of MCPH1 might explain our more complex brains.

Article from 2019

https://academic.oup.com/nsr/article/6/3/480/5420749


The earlier that Alzheimer’s disease and other similar conditions can be spotted, the better the treatment options are, and scientists have discovered a blood biomarker that could signal the risk of dementia many years in advance.

A team from the National Institute on Aging, the University of Texas, and the Johns Hopkins Bloomberg School of Public Health in the US, as well as other institutions across the world, looked at data on 10,981 individuals collected across the course of 25 years.

In particular, the researchers analyzed the proteome of these individuals: the complete set of proteins expressed in a body, driving all kinds of biological processes from cell communication to hormone levels.

The use of “smart drugs” to enhance productivity in academic and workplace settings is on the rise. A recent study published in Science Advances examined the effects of three popular smart drugs – methylphenidate, modafinil, and dextroamphetamine – on real-life tasks. The researchers hypothesized that these drugs, which affect dopamine and norepinephrine, would influence motivation and effort, ultimately leading to improved performance.

The study involved forty participants between the ages of 18 and 35. The participants were randomly assigned to four groups and attended four testing sessions. In each session, they were given one of three popular smart drugs or a placebo. The drugs were administered in a double-blinded manner, meaning neither the participants nor the researchers knew which drug was being given.

The researchers used a task called the “knapsack task” to evaluate the participants’ cognitive performance. This task involves solving a complex optimization problem where participants have to select items with certain weights and values to maximize the overall value while staying within a weight limit. The difficulty of the task was designed to simulate real-life complex tasks that people encounter.

The weaponization of the scientific and technological breakthroughs stemming from human genome research presents a serious global security challenge. Gene-editing pioneer and Nobel Laureate Jennifer Doudna often tells a story of a nightmare she once had. A colleague asked her to teach someone how her technology works. She went to meet the student and “was shocked to see Adolf Hitler, in the flesh.”

Doudna is not alone in being haunted by the power of science. Famously, having just returned home from Los Alamos in early 1945, John von Neumann awakened in panic. “What we are creating now is a monster whose influence is going to change history, provided there is any history left,” he stammered while straining to speak to his wife. He surmised, however, that “it would be impossible not to see it through, not only for military reasons, but it would also be unethical from the point of view of the scientists not to do what they knew is feasible, no matter what terrible consequences it may have.”

According to biographer Ananyo Bhattacharya, von Neumann saw what was happening in Nazi Germany and the USSR and believed that “the best he could do is allow politicians to make those [ethical and security] decisions: to put his brain in their hands.” Living through a devastating world war, the Manhattan Project polymath “had no trust left in human nature.”