Menu

Blog

Archive for the ‘neuroscience’ category: Page 268

Aug 25, 2022

CD38 gene is identified to be important in postnatal development of the cerebral cortex

Posted by in categories: biotech/medical, neuroscience

The brain consists of neurons and glial cells. The developmental abnormality of glial cells causes various diseases and aberrant cerebral cortex development. CD38 gene knockout is shown to cause aberrant development of glial cells, especially astrocytes and oligodendrocytes. The CD38 gene is known to be involved in cerebral cortex development. The present study suggests the importance of glial cells for cerebral cortex development.

It is essential for that both neurons and develop in a normal manner not only during fetal but also postnatal stages. In the postnatal brain, neurons extend long protrusions (axons and dendrites) to form complex networks for information exchange. On the other hand, glial are thought to support network formation of neurons, to regulate transmission of information, and to help survival of neurons. It is known that more than 50 percent of total cells in the brain are glial cells, three times more than neurons in number. It is also known that in the human brain has far more glial cells than the brains of rodents or primates. This indicates that for the higher functions of the brain, glial cells are of particular importance.

In the past, research on developmental disorders of the brain focused on neurons. Recently, however, research has focused on the abnormality of glial cells. There remain a number of unsolved problems concerning the mechanism of glial cell development in the postnatal brain and the relationship of glial cell abnormalities and developmental disorders of the brain.

Aug 25, 2022

Adding human glial cells to mice brains found to improve memory and cognition

Posted by in categories: biotech/medical, neuroscience

(Medical Xpress)—A team of researchers working at the University of Rochester in New York, has found that injecting glial cells into a mouse brain caused an improvement in both memory and cognition in the mouse. In their paper published in The Journal of Neuroscience, the team explains how they injected the test mice and then tested them afterwards to see what impact it had on their abilities.

Injecting human into mice brains appears to be the stuff of horror films, but in this case, it wasn’t really what it might have seemed. Glial cells are precursors to other cells—in this case, they develop into astrocytes, which are technically, brain cells. But, the important distinction here is that they are not neurons, which means they are not involved in thinking—instead they are involved in memory retention and help with housekeeping tasks.

Last year, the team injected mature into mice brains and reported improvements in ability by the mice—this time they went further, injecting progenitor precursor glial cells, which allows for development of more astrocytes. The team injected just 300,000 of the cells (from donated human embryos) and found just 12 months later that they had multiplied to grow to 12 million, completely displacing the original mouse astrocytes. It appeared, the team reported, that the cell growth only stopped when it reached the physical confines of the skull. They also note that it was interesting that the glial could thrive in such an environment considering that astrocytess in people are 10 to 20 times as big as those in mice and they carry 100 times as many tendrils. Testing the mice showed that their memory was far superior to normal mice and they had improved cognition as well.

Aug 25, 2022

‘Synthetic’ mouse embryo with brain and beating heart grown from stem cells

Posted by in categories: biotech/medical, neuroscience

Researchers from the University of Cambridge and Caltech have created model mouse embryos from stem cells—the body’s master cells, which can develop into almost any cell type in the body—that have beating hearts, as well as the foundations for a brain and all of the other organs in the mouse body.

The results are the culmination of more than a decade of research, and they could help researchers understand why some embryos fail while others go on to develop into a fetus as part of a healthy pregnancy. Additionally, the results could be used to guide repair and development of synthetic human organs for transplantation.

The research was conducted in the laboratory of Magdalena Zernicka-Goetz, Bren Professor of Biology and Biological Engineering at Caltech. Zernicka-Goetz is also a professor of mammalian development and in Cambridge’s Department of Physiology, Development and Neuroscience. A paper describing the breakthrough appears in the journal Nature on August 25.

Aug 25, 2022

Experts reveal how BRAIN CHIPS could be used to control crime

Posted by in categories: computing, neuroscience

With recent significant advances in brain implants, MailOnline talks to law professor Burkhard Schafer about how neurotechnologies could influence criminal trials in the future.

Aug 25, 2022

New nanosensor gives unprecedented look at dopamine release

Posted by in category: neuroscience

Astronomers build new telescopes and peer at the night sky to see what they might find. Janelia Group Leader Abraham Beyene takes a similar approach when looking at the cells that make up the human brain.

Beyene and his team design and synthesize new types of highly sensitive biosensors they use to peer at to see what they can learn.

Continue reading “New nanosensor gives unprecedented look at dopamine release” »

Aug 25, 2022

This 3D brain chip can detect deadly mental illnesses, company claims

Posted by in categories: biotech/medical, computing, neuroscience

3Brain.

This 3D chip will help to observe complex structures such as the human brain, according to a report published by Labiotech.eu on Tuesday.

Aug 25, 2022

Colorblindness in children could be cured completely, shows groundbreaking study

Posted by in category: neuroscience

Lisa5201/iStock.

This is a promising step toward reactivating previously inactive communication pathways between the retina and the brain by utilizing the plasticity of the teenage brain.

Aug 25, 2022

Maybe the Universe Thinks. Hear Me Out

Posted by in categories: cosmology, neuroscience, physics

Finally, there’s the issue that black holes can destroy information. Once you have crossed the event horizon, it seems you’d need to move faster than light to get back out. But a non-local connection across the horizon would also get information out. Some physicists have even suggested that dark matter, a hypothetical type of matter that supposedly makes up 85% of matter in the universe, is really a misattribution. There may be only normal matter, it’s just that its gravitational attraction is multiplied and spread out because places are non-locally connected to each other.

A non-locally connected universe, hence, would make sense for many reasons. If these speculations are correct, the universe might be full with tiny portals that connect seemingly distant places. The physicists Fotini Markopoulou and Lee Smolin estimated that our universe could contain as much as 10,360 of such non-local connections. And since the connections are non-local anyway, it doesn’t matter that they expand with the universe. The human brain, for comparison, has a measly 1015connections.

Let me be clear that there is absolutely zero evidence that non-local connections exist, or that, if they existed, they’d indeed allow the universe to think. But we cannot rule this possibility out either. Crazy as it sounds, the idea that the universe is intelligent is compatible with all we know so far.

Aug 25, 2022

Scientists accidentally discover a material that can ‘remember’ like a brain

Posted by in categories: materials, neuroscience

The Independent 2d.

The Independent’s journalism is supported by our readers. When you purchase through links on our site, we may earn commission. Discovery could enhance capacity, speed and ultimately lead to the miniaturisation of electronics Article bookmarked Find your bookmarks in your Independent Premium section, under my profile.

Aug 25, 2022

Study points to new approach to clearing toxic waste from brain

Posted by in categories: biotech/medical, genetics, neuroscience

Researchers at Washington University School of Medicine in St. Louis have found a new druggable pathway that potentially could be used to help prevent Alzheimer’s dementia.

Amyloid beta accumulation in the brain is the first step in the development of Alzheimer’s dementia. Scientists have poured countless hours and millions of dollars into finding ways to clear amyloid away before cognitive symptoms arise, with largely disappointing results.

In this study, published Aug. 24 in the journal Brain, researchers found a way to increase clearance of waste products from the brains of mice by ramping up a genetic quirk known as readthrough. This same strategy also may be effective for other characterized by the buildup of toxic proteins, such as Parkinson’s disease, the researchers said.