Toggle light / dark theme

Cannabis compound’s neuroprotective properties revealed — could be key to treating Alzheimer’s and Parkinson’s

Currently, treatments are largely limited to symptomatic relief rather than addressing the underlying disease progression. Given this gap in treatment options, there is a significant need for new therapies that can protect brain cells and potentially reverse damage.

Cannabinol (CBN), a compound derived from the cannabis plant, has emerged as a candidate for such treatments due to its neuroprotective properties, which are evident without the psychoactive effects associated with other cannabinoids like THC.

Previous studies indicated that CBN could help preserve mitochondrial function in brain cells, an essential factor for cell survival and energy production. Mitochondrial dysfunction is a common feature in several neurodegenerative diseases, often leading to cell death. By focusing on CBN and its derivatives, researchers aimed to develop new pharmacological strategies to prevent or mitigate the cellular mechanisms that lead to neurodegeneration.

Harvard and Google Neuroscience Breakthrough: Intricately Detailed 1,400 Terabyte 3D Brain Map

A collaborative effort between Harvard and Google has led to a breakthrough in brain science, producing an extensive 3D map of a tiny segment of human brain, revealing complex neural interactions and laying the groundwork for mapping an entire mouse brain.

A cubic millimeter of brain tissue may not sound like much. But considering that tiny square contains 57,000 cells, 230 millimeters of blood vessels, and 150 million synapses, all amounting to 1,400 terabytes of data, Harvard and Google researchers have just accomplished something enormous.

A Harvard team led by Jeff Lichtman, the Jeremy R. Knowles Professor of Molecular and Cellular Biology and newly appointed dean of science, has co-created with Google researchers the largest synaptic-resolution, 3D reconstruction of a piece of human brain to date, showing in vivid detail each cell and its web of neural connections in a piece of human temporal cortex about half the size of a rice grain.

MRI enables detection of light deep inside the brain

Engineers at MIT have developed a groundbreaking method for detecting bioluminescent light within the brain.

By modifying the brain’s blood vessels to express a specific protein, they induced dilation in response to light exposure.

The approach enabled researchers to visualize the dilation using magnetic resonance imaging (MRI), facilitating precise localization of light sources within the brain.

Scientists find sleep may not clear brain toxins

The brain’s ability to rid itself of toxins may actually be reduced during sleep, contrary to the leading scientific theory.

Over the past decade, the leading explanation for why we sleep has been that it provides the brain with an opportunity to flush out toxins.

However, a new study led by scientists at the UK Dementia Research Institute (UK DRI) at Imperial College London indicates that this may not be true.

Scientists Imaged and Mapped a Tiny Piece of Human Brain. Here’s What They Found

Researchers have made a digital map showing a tiny chunk of a human brain in unprecedented detail.

Based on a brain tissue sample that had been surgically removed from a person, the map represents a cubic millimeter of brain—an area about half the size of a grain of rice. But even that tiny segment is overflowing with 1.4 million gigabytes of information—containing about 57,000 cells, 230 millimeters of blood vessels and 150 million synapses, the connections between neurons.

The researchers published their findings in the journal Science on Friday. They have made the data set freely available online and provided tools for analyzing and proofreading it.