Toggle light / dark theme

How well that translation occurs remains to be seen while the patient learns and adapts to the new system. “The implant procedures involving the Onward ARC-IM and Clinatec BCI went smoothly,” Dr. Bloch said in an press release. “We are now working with the patient to use this cutting-edge innovation to recover movement of his arms, hands, and fingers. We look forward to sharing more information in due course.”

“If the therapy continues to show promise, it is possible it could reach patients by the end of the decade,” Onward CEO Dave Marver said in a statement to Engadget. “It is important to note that we do not expect people with spinal cord injury to wait that long for Onward to commercialize an impactful therapy — we hope to commercialize our external spinal cord stimulation solution, ARC-EX Therapy, to restore hand and arm function in the second half of 2024.”

Onward Medical among a quickly expanding field of BCI-based startups working to apply the fledgling technology to a variety of medical maladies. Those applications include loss of limb and self-regulatory function due to stroke, traumatic brain or spinal cord injury, physical rehabilitation from those same injuries, as well as a critical means of communication for people living with Locked-In Syndrome.

Cognitive decline is a growing public health concern that affects millions of people around the world. Amid an aging population, strategies that help prevent or mitigate cognitive deterioration become increasingly relevant to support healthy aging and maintaining independence for longer. Studies in the field of neuroscience applied to architecture (neuroarchitecture) have shown that the physical environment, both internal and external, public and private, plays a fundamental role in this aspect [1]. In this sense, architects and urban planners can direct their projects to create solutions that significantly contribute to this objective.

The human brain is a very plastic organ. In other words, it transforms functionally and structurally according to how it is stimulated. Although this plasticity is much more intense during the development period, it continues to exist throughout our lives [2,3]. Therefore, keeping the brain stimulated during adulthood and aging is key to keeping cognition functioning at its best. In this context, recent studies indicate that certain stimuli help in the development of a cognitive reserve [4]. This, in turn, is the brain’s resilience capacity, which helps it to remain functional even throughout aging and even when some neurodegenerative diseases arise [5].

Dr. Cody Visits Kernel Neuroscience Headquarters and tries on the Kernel Flow.

►►► INSTAGRAM (Behind The Scenes with Cody Rall MD):
https://www.instagram.com/codyrall_techforpsych/

►►► Dr. Cody’s presentation to Harvard/Digital Psychiatry: https://www.sodpsych.org/events.

►►► Kernel Lab and Aimlab footage posted with permission from Kernel: https://www.kernel.com/ and https://www.youtube.com/channel/UCXifD9arenz_20VlzLDHbwA

The brain is a sophisticated biological system known to produce different experiences and perceptions via complex dynamics. Different brain regions and neural populations commonly work in tandem, communicating with each other to ultimately produce specific behaviors and sensations.

Researchers at University of Oxford and the Max Planck Institute for Dynamics and Self-Organization recently carried out a study aimed at better understanding the neural dynamics underpinning this communication between neural populations. Their findings, gathered in Nature Neuroscience, show that the probability that mice will perceive something is linked to a variability of neural activity in the brain region that processes the incoming stimulus information.

“Generally, we are interested in how the brain processes information,” James Rowland and Thijs Van der Plas, co-authors of the paper, told Medical Xpress. “The brain receives inputs from the senses which reflect what is happening in the world around it. It must then make sense of this information and use it to make decisions and take actions. To achieve this, the brain is built on a principle of division of labor, where different regions are specialized to perform distinct tasks.”

Let’s say that it is a curse. The issue is he is also against life extension entirely. Maybe I want 200 years. Or 1,000. I have zero concern over a boredom problem as it is brain process which can eventually be controlled. And I am disgusted with the idea that I have to die because we might not progress very fast? Ugh.


Elon Musk has said a lot of potentially stupid stuff about aging and longevity, from saying that people shouldn’t live very long because society would ossify to advocating that we judge people based on their chronological age. Most recently, he’s taken to Twitter (aka X) to say “May you live forever is the worst possible curse once you understand deep time.” In this case though, he’s not wrong.

In this episode, we explore the diverse perspectives and heated debates triggered by Elon’s provocative statements on aging and the prospect of eternal life. We navigate through the complexities of deep time, the philosophical implications of living forever, and the importance of autonomy and control. Join host Ryan O’Shea as we examine arguments in favor of human’s being able to end their own lives, and explore how this played out in NBC’s The Good Place, starting Kristen Bell.

Image from a Johns Hopkins Medicine study showing PET scans from brains of people with and without late-life depression. The brains of patients with late-life depression show more yellow to red regions (scans on the left), indicating higher amyloid beta protein levels, and more blue regions (scans on the right), indicating lower serotonin transporter levels. Both imaging measures are markers of late-life depression. Credit: Graphic adapted from Smith et al, Nature, Sept. 13, 2021.

When the spinal cords of mice and humans are partially damaged, the initial paralysis is followed by the extensive, spontaneous recovery of motor function. However, after a complete spinal cord injury, this natural repair of the spinal cord doesn’t occur and there is no recovery. Meaningful recovery after severe injuries requires strategies that promote the regeneration of nerve fibers, but the requisite conditions for these strategies to successfully restore motor function have remained elusive.

“Five years ago, we demonstrated that can be regenerated across anatomically complete spinal cord injuries,” says Mark Anderson, a senior author of the study. “But we also realized this wasn’t enough to restore motor function, as the new fibers failed to connect to the right places on the other side of the lesion.” Anderson is the director of Central Nervous System Regeneration at. NeuroRestore and a scientist at the Wyss Center for Bio and Neuroengineering.

Working in tandem with peers at UCLA and Harvard Medical School, the scientists used state-of-the-art equipment at EPFL’s Campus Biotech facilities in Geneva to run in-depth analyses and identity which type of neuron is involved in natural spinal-cord repair after partial spinal cord injury.

The psychedelic drug MDMA can reduce symptoms of post-traumatic stress disorder, researchers reported in a new study published Thursday.

The company sponsoring the research said it plans later this year to seek U.S. approval to market the drug, also known as ecstasy, as a PTSD treatment when combined with talk therapy.

“It’s the first innovation in PTSD treatment in more than two decades. And it’s significant because I think it will also open up other innovation,” said Amy Emerson, CEO of MAPS Public Benefit Corporation, the research sponsor.”


A study has found that the psychedelic drug MDMA, combined with talk therapy, can reduce symptoms of post-traumatic stress disorder.