Toggle light / dark theme

Summary: Researchers developed an experimental computing system, resembling a biological brain, that successfully identified handwritten numbers with a 93.4% accuracy rate.

This breakthrough was achieved using a novel training algorithm providing continuous real-time feedback, outperforming traditional batch data processing methods which yielded 91.4% accuracy.

The system’s design features a self-organizing network of nanowires on electrodes, with memory and processing capabilities interwoven, unlike conventional computers with separate modules.

Back in 2021, a test of cephalopod smarts reinforced how important it is for us humans to not underestimate animal intelligence.

Cuttlefish were given a new version of the marshmallow test, and the results may demonstrate that there’s more going on in their strange little brains than we knew.

Their ability to learn and adapt, the researchers said, could have evolved to give cuttlefish an edge in the cutthroat eat-or-be-eaten marine world they live in.

A pair of studies from the laboratory of Evangelos Kiskinis, Ph.D., associate professor in the Ken and Ruth Davee Department of Neurology’s Division of Neuromuscular Disease and of Neuroscience, have uncovered novel cellular mechanisms that are involved in two types of genetic amyotrophic lateral sclerosis, or ALS.

The findings, published in Science Advances and Cell Reports, improve the understanding of ALS, a progressive neurodegenerative disease that attacks in the brain and , and provides support for the future development of targeted therapies.

An estimated 32,000 individuals are currently living with ALS in the U.S., according to the Les Turner ALS Foundation. There are two types of ALS: sporadic (non-genetic), which makes up more than 90% of all ALS cases, and familial (genetic).

Having healthy mitochondria, the organelles that produce energy in all our cells, usually portends a long healthy life whether in humans or in C. elegans, a tiny, short-lived nematode worm often used to study the aging process.

Researchers at the Buck Institute have identified a new drug-like molecule that keeps mitochondria healthy via mitophagy, a process that removes and recycles damaged mitochondria in multicellular organisms. The compound, dubbed MIC, is a that extended lifespan in C. elegans, ameliorated pathology in neurodegenerative disease models of C. elegans, and improved mitochondrial function in mouse muscle cells. Results are published in the November 13, 2023, edition of Nature Aging.

Defective mitophagy is implicated in many age-related diseases. It’s tied to neurodegenerative disorders such as Parkinson’s and Alzheimer’s; it plays a role in cardiovascular diseases including heart failure; it influences metabolic disorders including obesity and type 2 diabetes; it is implicated in muscle wasting and sarcopenia and has a complex relationship with cancer progression.

Scientists from the Shenzhen Institute of Advanced Technology (SIAT) within the Chinese Academy of Sciences (CAS), along with their partners, have designed a targeted gene therapy approach to mitigate the primary motor symptoms of Parkinson’s disease in both rodents and nonhuman primates.

The study was recently published in the journal Cell.

Parkinson’s disease, characterized by the loss of midbrain dopaminergic neurons, is one of the most common neurodegenerative diseases in the elderly population, affecting more than 6 million people worldwide.

The new research, part of the NIH BRAIN Initiative, paves the way toward treating, preventing, and curing brain disorders.

Salk Institute researchers, as part of a larger collaboration with research teams around the world, analyzed more than half a million brain cells from three human brains to assemble an atlas of hundreds of cell types that make up a human brain in unprecedented detail.

The research, published in a special issue of the journal Science on October 13, 2023, is the first time that techniques to identify brain cell subtypes originally developed and applied in mice have been applied to human brains.

Researchers at Auburn University have achieved a groundbreaking discovery, illuminating the process by which brain cells efficiently replace older proteins. This process is essential for maintaining effective neural communication and optimal cognitive function.

The findings were published on November 6 in the prestigious journal, Frontiers in Cell Development and Biology. The study, entitled “Recently Recycled Synaptic Vesicles Use Multi-Cytoskeletal Transport and Differential Presynaptic Capture Probability to Establish a Retrograde Net Flux During ISVE in Central Neurons,” explains the transportation and recycling of older proteins in brain cells.

Psychiatric patients almost twice as likely to have multiple physical ailments – new study.

A new study, conducted by Anglia Ruskin University (ARU) in collaboration with the University of Cambridge’s Biomedical Research Centre, has revealed significant findings about the physical health of psychiatric patients. This extensive analysis incorporated data from 19 different studies, involving 194,123 psychiatric patients globally, and compared them to 7,660,590 individuals in control groups.

Findings on Multimorbidity.

🤰 🧠 👶


Study investigates how maternal metabolic conditions like pregestational diabetes, gestational diabetes, and obesity mediate the risk of neurodevelopmental conditions in children. It highlights the significant role of obstetric and neonatal complications in this relationship, emphasizing the need for managing these complications to mitigate children’s risk of developing conditions like ADHD and autism.