Menu

Blog

Archive for the ‘neuroscience’ category: Page 225

Apr 23, 2023

Blackrock Neurotech Reveals Neuralace™: 10,000+ Channel Next-Gen BCI

Posted by in categories: biotech/medical, computing, cyborgs, neuroscience

Blackrock’s long-tested NeuroPort® Array, widely considered the gold standard of high-channel neural interfacing, has been used in human BCIs since 2004 and powered many of the field’s most significant milestones. In clinical trials, patients using Blackrock’s BCI have regained tactile function, movement of their own limbs and prosthetics, and the ability to control digital devices, despite diagnoses of paralysis and other neurological disorders.

While Blackrock’s BCI enables patients to execute sophisticated functions without reliance on assistive technologies, next-generation BCIs for areas such as vision and memory restoration, performance prediction, and treatment of mental health disorders like depression will need to interface with more neurons.

Neuralace is designed to capitalize on this need; with 10,000+ channels and the entire scalable system integrated on an extremely flexible lace-structured chip, it could capture data that is orders of magnitude greater than existing electrodes, allowing for an exponential increase in capability and intuitiveness.

Apr 23, 2023

When Brains Dream: Exploring the Science and Mystery of Sleep

Posted by in categories: biotech/medical, neuroscience, science

A book talk by:

Robert Stickgold, PhD

Continue reading “When Brains Dream: Exploring the Science and Mystery of Sleep” »

Apr 23, 2023

Goebel Rainer — Resolving activity in cortical columns and cortical layers in the human brain (…)

Posted by in categories: biological, education, neuroscience

Resolving activity in cortical columns and cortical layers in the human brain with ultra-high field fMRI — new insights for biological models of cognitive functions.
Speaker: Rainer Goebel, Maastricht University, Netherlands.

HBP School — The Human Brain Atlas: Neuroscientific basis, tools and applications.
3–7 September 2018
Düsseldorf/Jülich, Germany.
Maastricht, Netherlands.

Continue reading “Goebel Rainer — Resolving activity in cortical columns and cortical layers in the human brain (…)” »

Apr 23, 2023

Study: Diseases of the Brain are Best Classified Based on Analyzing Gene Activity

Posted by in categories: biotech/medical, neuroscience

A recent study has suggested that transcriptomes may be the best method for classifying different types of brain disease.

Apr 23, 2023

How does our brain create a coherent image when we look at different objects?

Posted by in categories: evolution, neuroscience

When we look at something, the different properties of the image are processed in different brain regions. But how does our brain make a coherent image out of such a fragmented representation? A new review by Pieter Roelfsema sheds light on two existing hypotheses in the field.

When we open our eyes, we immediately see what is there. The efficiency of our vision is a remarkable achievement of evolution. The introspective ease with which we perceive our visual surroundings masks the sophisticated machinery in our brain that supports . The image that we see is rapidly analyzed by a complex hierarchy of cortical and subcortical brain regions.

Neurons in low level brain regions extract basic features such as line orientation, depth and the color of local image elements. They send the information to several mid-level brain areas. Neurons in these areas code for other features, such as motion direction, color and shape fragments.

Apr 23, 2023

We make thousands of unconscious decisions every day: Here’s how your brain copes with that

Posted by in category: neuroscience

Do you remember learning to drive a car? You probably fumbled around for the controls, checked every mirror multiple times, made sure your foot was on the brake pedal, then ever-so-slowly rolled your car forward.

Fast forward to now and you’re probably driving places and thinking, “how did I even get here? I don’t remember the drive”. The task of driving, which used to take a lot of mental energy and concentration, has now become subconscious, automatic—habitual.

But how—and why—do you go from concentrating on a task to making it automatic?

Apr 23, 2023

Mitochondria power supply failure may cause age-related cognitive impairment

Posted by in categories: biotech/medical, life extension, neuroscience

Brains are like puzzles, requiring many nested and co-dependent pieces to function well. The brain is divided into areas, each containing many millions of neurons connected across thousands of synapses. These synapses, which enable communication between neurons, depend on even smaller structures: message-sending boutons (swollen bulbs at the branch-like tips of neurons), message-receiving dendrites (complementary branch-like structures for receiving bouton messages), and power-generating mitochondria. To create a cohesive brain, all these pieces must be accounted for.

However, in the aging , these pieces can get lost or altered, and no longer fit in the greater brain puzzle. A research team has now published a study in Frontiers in Aging Neuroscience on this topic.

“Fifty percent of people experience loss of working memory with old age, meaning their ability to hold and manipulate information in the short-term decreases,” says co-first author Courtney Glavis-Bloom, a senior staff scientist in Salk Institute Professor John Reynolds’s lab. “We set out to understand why some individuals maintain healthy working memory as they age, while others do not. In the process, we discovered a novel mechanism for the synaptic basis of cognitive impairment.”

Apr 23, 2023

Childhood abuse and biological sex linked to epigenetic changes in functional neurological disorder

Posted by in categories: biotech/medical, genetics, health, neuroscience, sex

Functional movement/conversion disorder (FMD), part of the spectrum of Functional Neurological Disorder (FND), is a neuropsychiatric condition marked by a range of neurological symptoms, including tremors, muscular spasms and cognitive difficulties. Despite being the second-most common cause of referrals to neurology outpatient clinics after headache, scientists have struggled to pin down the disorder’s root cause. Female sex and a history of childhood trauma are factors associated with higher risk of developing FMD, but it’s been unclear why.

A new study from investigators of the Brigham and Women’s Hospital, in collaboration with researchers at the National Institute of Neurological Disorders and Stroke, demonstrated that FMD is characterized by epigenetic changes, and that women and childhood abuse survivors with FMD have different epigenetic profiles linked to this condition. Their study, which examined the genomes of over 100 individuals and was recently published in Progress in Neuro-Psychopharmacology and Biological Psychiatry, is the first to demonstrate the occurrence of epigenetic changes in FMD.

“This study finally takes FMD out of a cloud of confusion and provides a neuroscientifically grounded explanation for why childhood trauma and female sex are associated with this disorder,” said lead author Primavera A. Spagnolo, MD, Ph.D., scientific director of the Mary Horrigan Connors Center for Women’s Health and Gender Biology and assistant professor of psychiatry at HMS.

Apr 23, 2023

Identification of tunnels connecting neurons in the developing brain

Posted by in categories: nanotechnology, neuroscience

Over a hundred years after the discovery of the neuron by neuroanatomist Santiago Ramón y Cajal, scientists continue to deepen their knowledge of the brain and its development.

In a publication in Science Advances on April 5, a team from the Institut Pasteur and the CNRS, in collaboration with Harvard University, revealed novel insights into how cells in the outer layers of the brain interact immediately after birth during formation of the cerebellum, the brain region towards the back of the skull.

Continue reading “Identification of tunnels connecting neurons in the developing brain” »

Apr 23, 2023

How the brain stops us learning from our mistakes, and what to do about it

Posted by in category: neuroscience

You learn from your mistakes. At least, most of us have been told so. But science shows that we often fail to learn from past errors. Instead, we are likely to keep repeating the same mistakes.

What do I mean by mistakes here? I think we would all agree that we quickly learn that if we put our hand on a hot stove, for instance, we get burned, and so are unlikely to repeat this mistake again. That’s because our brains create a threat-response to the physically painful stimuli based on past experiences. But when it comes to thinking, behavioral patterns and decision making, we often repeat mistakes—such as being late for appointments, leaving tasks until the last moment or judging people based on first impressions.

The reason can be found in the way our processes information and creates templates that we refer to again and again. These templates are essentially shortcuts, which help us make decisions in the real world. But these shortcuts, known as heuristics, can also make us repeat our errors.