Toggle light / dark theme

Thrombolytic therapy administered longer after the onset of ischemic stroke than current recommendations did not demonstrate improved clinical outcomes as compared to placebo, according to a recent trial published in the New England Journal of Medicine.

Minjee Kim, MD, associate professor in the Ken and Ruth Davee Department of Neurology’s Division of Neurocritical Care, was a co-author of the study.

Ischemic stroke occurs when a blood vessel supplying blood to the brain is blocked or reduced, and accounts for nearly 90% of all strokes, according to statistics from the American Stroke Association.

The eyes have been called the window to the brain. It turns out they also serve as an immunological barrier that protects the organ from pathogens and even tumors, Yale researchers have found.

In a new study, researchers showed that vaccines injected into the eyes of mice can help disable the herpes virus, a major cause of brain encephalitis. To their surprise, the vaccine activates an immune response through lymphatic vessels along the optic nerve.

Transplanting Whole Human Eyes To Restore Vision In Patients Who Are Blind Or Visually Impaired — Dr. Calvin Roberts, MD — Program Manager, Transplantation of Human Eye Allografts (THEA), Advanced Research Projects Agency for Health (ARPA-H)


Dr. Calvin Roberts, M.D. is Program Manager at the Advanced Research Projects Agency for Health (ARPA-H) where manages for the Transplantation of Human Eye Allografts (THEA — https://arpa-h.gov/research-and-fundi…) program, which aims to transplant whole human eyes to restore vision in patients who are blind or visually impaired by reconnecting the nerves, muscles and blood vessels of whole donor eyes to the brain.

Dr. Roberts joined ARPA-H in September 2023 from Lighthouse Guild International, where is the president and chief executive officer. Lighthouse Guild is a not-for-profit organization that provides programs and services to people who are blind or visually impaired.

New Haven, Conn. — Contrary to popular belief, brain cells use a mix of analog and digital coding at the same time to communicate efficiently, according to a study by Yale School of Medicine researchers published this week in Nature.

This finding partially overturns a longstanding belief that each of the brain’s 100 billion neurons communicate strictly by a digital code. Analog systems represent signals continuously, while digital systems represent signals in the timing of pulses. Traditionally, many human-designed circuits operate exclusively in analog or in digital modes.

“This study reveals that the brain is very sophisticated in its operation, using a code that is more efficient than previously appreciated,” said David McCormick, professor in the Department of Neurobiology and senior author of the study. “This has widespread implications, not only for our basic understanding of how the brain operates, but also in our understanding of neuronal dysfunction.”

Unlike computers, cells in the brain use digital and analog signals at the same time to communicate with each other, researchers have found.

The finding contradicts the belief that nerve cells in the brain communicate with each other using digital code only.

In an analog system, signals can vary continuously, while digital systems represent signals by a series of pulses. The brain uses a mixture of the two to transmit signals among cells, researchers say.

Summary: A new study explores how the human brain constructs emotions, regardless of sensory input.

By analyzing brain activity in individuals with and without sensory deprivations while they experienced the film 101 Dalmatians, researchers discovered that emotions are represented in the brain through an abstract coding system that transcends sensory modalities. This system involves a distributed network, including the ventromedial prefrontal cortex, which stores abstract representations of emotions.

The findings challenge traditional views on emotion and perception, suggesting that our emotional experiences are not solely dictated by our immediate sensory input but are instead constructed by the brain in a more abstract manner.

ABOVE: After years of research, brain organoids now come close to mimicking endogenous brain cells. © iStock, StockSnap.

As a developmental neurobiologist at Harvard University, Paola Arlotta spends most of her time thinking about how the brain develops, how it functions, and what goes wrong in the context of neurological disease. Using human brain organoids as a model for brain development and disease research has been a game changer, providing Arlotta a novel view into brain pathologies that form in utero.

The University of Chicago Medicine is among the first 30 institutions in the country to offer tumor-infiltrating lymphocyte (TIL) therapy for advanced melanoma, immediately activating as an authorized treatment center after federal regulators approved the treatment on February 16, 2024.


Effortless, enjoyable productivity is a state of consciousness prized and sought after by people in business, the arts, research, education and anyone else who wants to produce a stream of creative ideas and products. That’s the flow, or the sense of being “in the zone.” A new neuroimaging study from Drexel University’s Creativity Research Lab is the first to reveal how the brain gets to the creative flow state.

The study is published in the journal Neuropsychologia.

The study isolated flow-related brain activity during a creative task: jazz improvisation. The findings reveal that the creative flow state involves two key factors: extensive experience, which leads to a network of brain areas specialized for generating the desired type of ideas, plus the release of control— letting go—to allow this network to work with little or no conscious supervision.

Anthropic announces Claude 3

The three state-of-the-art models.

Claude 3 opus, claude 3 sonnet, and claude 3 haiku.


Today, we’re announcing the Claude 3 model family, which sets new industry benchmarks across a wide range of cognitive tasks. The family includes three state-of-the-art models in ascending order of capability: Claude 3 Haiku, Claude 3 Sonnet, and Claude 3 Opus.