Menu

Blog

Archive for the ‘neuroscience’ category: Page 180

Jan 31, 2023

Tuning Into Brainwave Rhythms Speeds up Learning in Adults

Posted by in category: neuroscience

Summary: Tuning into a person’s brain wave cycle before they perform a learning task can dramatically improve the speed at which cognitive skills improve.

Source: University of Cambridge.

Scientists have shown for the first time that briefly tuning into a person’s individual brainwave cycle before they perform a learning task dramatically boosts the speed at which cognitive skills improve.

Jan 31, 2023

MIT neuroscientist shares 4 things she never does to eliminate ‘brain fog and forgetfulness’

Posted by in categories: food, neuroscience

Brain fog can be caused by stress or eating the wrong foods. Neuroscientist Tara Swart Bieber shares how she boosts mental clarity, memory and concentration.

Jan 31, 2023

Scientists Reveal New Potential Therapeutic Targets for Mental and Neurological Disorders

Posted by in categories: biotech/medical, mathematics, media & arts, neuroscience

A recent study from researchers at the University of California, Irvine found that the removal of cilia from the striatum region of the brain negatively impacted time perception and judgement, opening the possibility for new therapeutic targets for mental and neurological conditions such as schizophrenia, Parkinson’s and Huntington’s diseases, autism spectrum disorder.

Autism Spectrum Disorder (ASD) is a complex developmental disorder that affects how a person communicates and interacts with others. It is characterized by difficulty with social communication and interaction, as well as repetitive behaviors and interests. ASD can range from mild to severe, and individuals with ASD may have a wide range of abilities and challenges. It is a spectrum disorder because the symptoms and characteristics of ASD can vary widely from person to person. Some people with ASD are highly skilled in certain areas, such as music or math, while others may have significant learning disabilities.

Jan 31, 2023

Scientists harness light therapy to target and kill cancer cells in world first

Posted by in categories: biotech/medical, neuroscience

Year 2022 😗


Experts believe it is destined to become the world’s fifth major cancer treatment after surgery, chemotherapy, radiotherapy and immunotherapy.

The light-activated therapy forces cancer cells to glow in the dark, helping surgeons remove more of the tumours compared with existing techniques – and then kills off remaining cells within minutes once the surgery is complete. In a world-first trial in mice with glioblastoma, one of the most common and aggressive types of brain cancer, scans revealed the novel treatment lit up even the tiniest cancer cells to help surgeons remove them – and then wiped out those left over.

Continue reading “Scientists harness light therapy to target and kill cancer cells in world first” »

Jan 31, 2023

The Believing Brain: Evolution, Neuroscience, and the Spiritual Instinct

Posted by in categories: evolution, neuroscience

God, they say, is in the details. But could God also be in our frontal lobes? Every culture from the dawn of humankind has imagined planes of existence beyond the reach of our senses, spiritual domains that shape our Earthly experiences. Why do beliefs of the fantastic hold such powerful sway over our species? Is there something in our evolutionary history that points to an answer? Does neuroscience hold the key? Straddling the gap between science and religion, Brian Greene is joined by renowned neuroscientists, anthropologists, and evolutionary biologists, to explore one of the most profound mysteries of our existence.

PARTICIPANTS: Lisa Barrett, Barbara J. King, Zoran Josipovic, Steven Pinker.

Continue reading “The Believing Brain: Evolution, Neuroscience, and the Spiritual Instinct” »

Jan 31, 2023

Distributed harmonic patterns of structure-function dependence orchestrate human consciousness

Posted by in categories: biotech/medical, mathematics, neuroscience

Connectome harmonic decomposition (CHD) generalises the mathematics of the Fourier transform to the network structure of the human brain. The traditional Fourier transform operates in the temporal domain (Fig. 1a): decomposition into temporal harmonics quantifies to what extent the signal varies slowly (low-frequency temporal harmonics) or quickly (high-frequency temporal harmonics) over time (Fig. 1b). Analogously, CHD re-represents a spatial signal in terms of harmonic modes of the human connectome, so that the spatial frequency (granularity) of each connectome harmonic quantifies to what extent the organization of functional brain signals deviates from the organization of the underlying structural network (Fig. 1c, d). Therefore, CHD is fundamentally different from, and complementary to, traditional approaches to functional MRI data analysis. This is because CHD does not view functional brain activity as composed of signals from discrete spatial locations, but rather as composed of contributions from distinct spatial frequencies: each connectome harmonic is a whole-brain pattern with a characteristic spatial scale (granularity)—from an entire hemisphere to just a few millimetres.

On one hand, this means that CHD is unsuitable to address questions pertaining to spatial localisation and the involvement of specific neuroanatomical regions; such questions have been extensively investigated within the traditional framework of viewing brain activity in terms of spatially discrete regions, and several previous studies have implicated specific neuroanatomical regions in supporting consciousness33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49. On the other hand, CHD enables us to consider how brain activity across states of consciousness is shaped by the brain’s distributed network of structural connections, reflecting the contribution of global patterns at different spatial scales—each arising from the network topology of the human connectome. We emphasise that neither approach is inherently superior, but rather they each provide a unique perspective on brain function: one localised, the other distributed.

Jan 30, 2023

How Our Brains Turn Into Smarter Disease Fighters

Posted by in categories: bioengineering, biotech/medical, neuroscience

CRISPR gene editing created the G795A amino acid which was introduced to microglia derived from human stem cells. Researchers were able to transplant the donor microglia immune cells into humanized rodent models while administering an FDA-approved cancer drug called pexidartinib. The inclusion of the amino acid cause the donated microglia to thrive and resist the drug, while the host microglia died. The findings open the door for new methods of using microglia to treat a range of neurodegenerative disorders.

Jan 30, 2023

Introduction to Brain Network Analysis — Part 2/2

Posted by in category: neuroscience

Part 2/2. Graph Theoretical Modelling of Brain Connectivity. Concepts and Workflow. GraphVar by Dr. Johann D. Kruschwitz.

Jan 30, 2023

Introduction to Brain Network Analysis — Part 1/2

Posted by in category: neuroscience

Graph Theoretical Modelling of Brain Connectivity. Concepts and Workflow. GraphVar by Dr. Johann D. Kruschwitz.

Jan 30, 2023

Evolving Neural Networks Workshop

Posted by in categories: neuroscience, robotics/AI

(see below for links to each of the sections)

The goal of the Evolving Neural Networks workshop is to bring together experts from Systems and Computational Neuroscience, Machine Learning and the Evo-Devo field to discuss if and how knowing the evolutionary history of neural circuits can help us understand the way the brain works, as well as the relative importance of learned VS innate neural mechanisms.

Continue reading “Evolving Neural Networks Workshop” »