Toggle light / dark theme

Whether in the brain or in code, neural networks are shaping up to be one of the most critical areas of research in both neuroscience and computer science. An increasing amount of attention, funding, and development has been pushed toward technologies that mimic the brain in both hardware and software to create more efficient, high performance systems capable of advanced, fast learning.

One aspect of all the efforts toward more scalable, efficient, and practical neural networks and deep learning frameworks we have been tracking here at The Next Platform is how such systems might be implemented in research and enterprise over the next ten years. One of the missing elements, at least based on the conversations that make their way into various pieces here, for such eventual end users is reducing the complexity of the training process for neural networks to make them more practically useful–and without all of the computational overhead and specialized systems training requires now. Crucial then, is a whittling down of how neural networks are trained and implemented. And not surprisingly, the key answers lie in the brain, and specifically, functions in the brain and how it “trains” its own network that are still not completely understood, even by top neuroscientists.

In many senses, neural networks, cognitive hardware and software, and advances in new chip architectures are shaping up to be the next important platform. But there are still some fundamental gaps in knowledge about our own brains versus what has been developed in software to mimic them that are holding research at bay. Accordingly, the Intelligence Advanced Research Projects Activity (IARPA) in the U.S. is getting behind an effort spearheaded by Tai Sing Lee, a computer science professor at Carnegie Mellon University’s Center for the Neural Basis of Cognition, and researchers at Johns Hopkins University, among others, to make new connections between the brain’s neural function and how those same processes might map to neural networks and other computational frameworks. The project called the Machine Intelligence from Cortical Networks (MICRONS).

Read more

Great progress by Institute of the McGill University Health Centre has study astrocytes (the star shape brain cells) which play fundamental roles in nearly all aspects of brain function, could be adjusted by neurons in response to injury and disease.


A research team, led by the Research Institute of the McGill University Health Centre (RI-MUHC) in Montreal, has broken new ground in our understanding of the complex functioning of the brain. The research, which is published in the current issue of the journal Science, demonstrates that brain cells, known as astrocytes, which play fundamental roles in nearly all aspects of brain function, could be adjusted by neurons in response to injury and disease. The discovery, which shows that the brain has a far greater ability to adapt and respond to changes than previously believed, could have significant implications on epilepsy, movement disorders, and psychiatric and neurodegenerative disease.

Astrocytes are star-shaped cells in our brain that surround brain neurons, and neural circuits, protecting them from injury and enabling them to function properly – in essence, one of their main roles is to ‘baby-sit’ neurons. Our brain contains billions of cells, each of which need to communicate between each other in order to function properly. This communication is highly dependent on the behaviour of astrocytes. Until now, the mechanisms that create and maintain differences among astrocytes, and allow them to fulfill specialized roles, has remained poorly understood.

“It was believed that astrocytes acquired their properties during the development of the brain and then they were hardwired in their roles,” says senior study’s author Dr. Keith Murai, director of the Centre for Research in Neuroscience at the RI-MUHC, associate professor of the Department of Neurology and Neurosurgery at McGill University. “We have now discovered that astrocytes are actually incredibly flexible and potentially modifiable, which enables them to improve brain function or restore lost potential caused by disease.’’

Read more

Meet the opponents of BMIs & their report.


*This article only represents a very small fraction of the research regarding the dangers associated with these devices. We encourage you to further your own research, and just wanted to provide a base to let you know that it’s something more of us need to pay attention to.

Did you know that a child’s brain absorbs much more radiation than that of an adult?

Dr. Martin Blank, Ph.D., from the Department of Physiology and Cellular Biophysics at Colombia University, has joined a group of scientists from around the world who are making an international appeal to the United Nations regarding the dangers associated with the use of various electromagnetic emitting devices, like cells phones and WiFi.

Read more

Of course the title is outlandishly overreacting, but the article is interesting.


Millenniums old mystery of consciousness solved by explaining how, when and why does it emerge and how subconscious and unconscious thoughts and processes influence decisions and behaviour, besides explaining causal relations of consciousness to sensations, perceptions, thoughts, awareness, attention, pain, hunger, etc. including the ‘hard problem of consciousness’.

Read more

Whether or not nerve cells are able to regrow after injury depends on their location in the body. Injured nerve cells in the peripheral nervous system, such as those in the arms and legs, can recover and regrow, at least to some extent. But nerve cells in the central nervous system—the brain and spinal cord—can’t recover at all.

A UCLA-led collaboration has identified a specific network of genes and a pattern of gene expression mice that promote repair in the peripheral nervous system in a mouse model. This network, the researchers found, does not exist in the central nervous system. The researchers also found a drug that can promote in the central nervous system.

The study appears in the of the journal Neuron.

Read more

Glioblastoma multiforme (GBM) is often difficult to treat due to an enzyme (endonuclease DFF40/CAD (Death Fragmentation Factor, 40 kDa subunit / Caspase-Activated DNase)). This enzyme, which is essential for degrading DNA during apoptosis, appears both downregulated and improperly located inside the tumour cells. The researchers observed that overexpression of the enzyme allows the glioblastoma cells to properly degrade their DNA content.


Glioblastoma is the most aggressive manifestation of brain tumours. Due to its high invasive capacity and uncontrolled, infiltrating growth, it is particularly difficult to manage. Currently, the treatment for this disease consists of a combination of surgery (when possible), radiation and chemotherapy. Although current therapy raises the overall survival of patients by around 15 months, it remains inefficient at eradicating tumour cells and, unfortunately, recurrences are another of this cancer’s characteristics.

A team of researchers from the Institute of Neuroscience at the UAB, together with the Hospital Universitari de Bellvitge — ICO, have identified a common molecular alteration in glioblastoma. The researchers observed that the cells of this type of tumour harbour a common intrinsic defect that prevents them from degrading their genetic material during apoptosis, the most important form of programmed cell death induced by radiotherapy and chemotherapy.

This defect is related to an enzyme: the endonuclease DFF40/CAD (Death Fragmentation Factor, 40 kDa subunit / Caspase-Activated DNase). This enzyme, which is essential for degrading DNA during apoptosis, appears both downregulated and improperly located inside the tumour cells when compared with non-tumoural cells. The researchers observed that overexpression of the enzyme allows the glioblastoma cells to properly degrade their DNA content as expected in an apoptotic cell death.

Read more

A new chip designed for the brain is now wireless. Now that it is no longer connected using wires, will it compromise its accuracy?

The Nanyang Technological University in Singapore has developed a smart chip that can be used for neural implants in order to wirelessly transmit brain signals to the rest of the body with 95% accuracy. These neural implants, and the data that they register, are expected to help curtail symptoms of diseases like Parkinson’s, and they could also help paraplegic patients move their prosthetic limbs.

For operations, external devices can use the the 5mm by 5mm chip to receive and analyze data before sending back important details, instead of sending the entire data stream all at once. This drastically decreases its power consumption, making the tech far more viable.

Read more

A complete cognitive architecture to implement systems that are self-aware and capable of intentional mutations. Now available at mecasapiens.com.

HALIFAX, CANADA, February 16, 2016 (Newswire.com) — Monterège Design Inc. is pleased to announce the publication of a cognitive architecture to implement synthetic consciousness. The systems based on this architecture will be fully autonomous, self-aware and capable of intentional mutations. The architecture, published under the title The Meca Sapiens Blueprint, is complete and ready for design and implementation. It can be purchased on line at mecasapiens.com.

Read more