Toggle light / dark theme

Newly discovered disease could hold key to Alzheimer’s, Parkinson’s – and even ageing

A new genetic disease has been discovered that could play a key role in devastating brain conditions such as Alzheimer’s and Parkinson’s, opening up the possibility of new forms of treatment.

A 47-year-old Canadian woman, who had been having difficulty walking and balancing since she was 28, was found to have a new genetic disease after 10 known conditions were ruled out, according to a paper in the journal Nature by an international team of researchers.

The disease causes an over-reaction by the body’s natural repair system. An enzyme, known as PARP1, goes into over-drive, ultimately causing the deaths of brain cells.

New biomarker predicts Alzheimer’s disease and link to diabetes

A new biomarker for Alzheimers could improve the patient outcome and allow for earlier treatment.


An enzyme found in the fluid around the brain and spine is giving researchers a snapshot of what happens inside the minds of Alzheimer’s patients and how that relates to cognitive decline.

Iowa State University researchers say of the enzyme, autotaxin, significantly predict impairment and Type 2 diabetes. Just a one-point difference in autotaxin levels — for example, going from a level of two to a three — is equal to a 3.5 to 5 times increase in the odds of being diagnosed with some form of memory loss, said Auriel Willette, an assistant professor of food science and human nutrition at Iowa State.

Autotaxin, often studied in cancer research, is an even stronger indicator of Type 2 diabetes. A single point increase reflects a 300 percent greater likelihood of having the disease or pre-diabetes. The results are published in the Journal of Alzheimer’s Disease. Willette and Kelsey McLimans, a graduate research assistant, say the discovery is important because of autotaxin’s proximity to the .

Turning therapeutic antibodies inside-out to fight cancer

More progress on the cancer front! Controlling cancer effectively is a critical part of rejuvenation biotechnology and therefore all cancer progress is of great interest to our community. If there was a poster child of aging diseases, cancer would be at the front of the queue.

“The results could lead to new treatments—not only for a variety of cancers, but also other diseases that arise from faulty proteinases, such as Alzheimer’s, asthma, multiple sclerosis and arthritis.”

The disturbingly accurate brain science that identifies potential criminals while they’re still toddlers

Scientists are able to use brain tests on three-year-olds to determine which children are more likely to grow up to become criminals. It sounds like Minority Report come to life: An uncomfortable idea presenting myriad ethical concerns. But, though unnerving, the research is nuanced and could potentially be put to good use.

In the study, published in Nature Human Behavior this week, researchers led by neuroscientists at Duke University showed that those with the lowest 20% brain health results aged three went on to commit more than 80% of crimes as adults. The research used data from a New Zealand longitudinal study of more than 1,000 people from birth in the early 1970s until they reached 38 years old. This distribution, of 20% of a population accounting for 80% of an effect, is strong but not unusual. In fact, it follows the “Pareto principle.” The authors write in their paper:

In Pareto’s day, the problem definition was that 20% of families owned 80% of land in Italy. The so-called Pareto principle is alive and useful today: for example, in software engineering, 20% of the code is said to contain 80% of the errors.

Gene editing takes on new roles

What combinations of mutations help cancer cells survive? Which cells in the brain are involved in the onset of Alzheimer’s? How do immune cells conduct their convoluted decision-making processes? Researchers at the Weizmann Institute of Science have now combined two powerful research tools — CRISPR gene editing and single cell genomic profiling — in a method that may finally help us get answers to these questions and many more.

The new technology enables researchers to manipulate gene functions within single cells, and understand the results of each change in extremely high resolution. A single experiment with this method, say the scientists, may be equal to thousands of experiments conducted using previous approaches, and it may advance the field of genetic engineering for medical applications.

The gene-editing technique CRISPR is already transforming biology research around the world, and its clinical use in humans is just around the corner. CRISPR was first discovered in bacteria as a primitive acquired immune system, which cuts and pastes viral DNA into their own genomes to fight viruses. In recent years, this bacterial system has been adopted by researchers to snip out or insert nearly any gene in any organism or cell, quickly and efficiently. “But CRISPR, on its own, is a blunt research tool, since we often have trouble observing or understanding the outcome of this genomic editing,” says Prof. Ido Amit of the Weizmann Institute of Science’s Immunology Department, who led the study. “Most studies so far have looked for black-or-white types of effects,” adds Dr. Diego Jaitin, of Amit’s lab group, “but the majority of processes in the body are complex and even chaotic.”

This Device Can Bypass Spinal Injuries to Help Defeat Paralysis

Nice.


Doctors in the US have developed a stimulator that bypasses spinal injuries by forcing the body to use alternative pathways to transmit signals from the brain to other areas of the body.

In the latest test, the team has shown that the device can improve a quadriplegic patient’s finger motion by 300 percent while improving grip strength, helping him to perform everyday tasks again.

Back in June, the team from the Ronald Reagan University of California, Los Angeles Medical Centre performed surgery to implant the newly developed device inside a 28-year-old California man named Brian Gomez.

How brain tissue recovers after injury

Nice write up.


A research team led by Associate Professor Mitsuharu ENDO and Professor Yasuhiro MINAMI (both from the Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University) has pinpointed the mechanism underlying astrocyte-mediated restoration of brain tissue after an injury. This could lead to new treatments that encourage regeneration by limiting damage to neurons incurred by reduced blood supply or trauma. The findings were published on October 11 in the online version of GLIA ahead of print release in January 2017.

When the brain is damaged by trauma or ischemia (restriction in blood supply), immune cells such as macrophages and lymphocytes dispose of the damaged neurons with an inflammatory response. However, an excessive inflammatory response can also harm healthy neurons.

Astrocytes are a type of glial cell*, and the most numerous cell within the human cerebral cortex. In addition to their supportive role in providing nutrients to neurons, studies have shown that they have various other functions, including the direct or active regulation of neuronal activities.

Columbia University reveal what your brain looks like when you ‘zone out’

Pretty wild.


A mesmerising new video reveals how neuronal signaling changes blood flow through the brain. Image shows patterns of brain activity occurring across the bilateral cortex of an awake mouse. Colours indicate different patterns of activity over time.

Functional magnetic resonance imaging (fMRI) scans are a common type of brain scan used in both research and medicine.

FMRI machines work by tracking blood flow through the brain.

The neuroscience behind imagination

Trying to simplify and understand imagination isn’t that easy. Should be a great read for my tech friends trying to replicate this process.


Imagination… we can all imagine things – even things we have never seen before. Even things that don’t exist. How do our brains achieve that?

Imagine a duck teaching a French class. A Ping-Pong match in orbit around a black hole. A dolphin balancing a pineapple.

You probably haven’t actually seen any of these things but you could imagine them instantly.