Toggle light / dark theme

Way cool.


Feb. 2 (UPI) — Scientists at the University of California, Santa Barbara want to study the effects of various mechanical forces on individual brain cells. Until now, however, researchers didn’t have the right tools.

To study brain impacts at the nanoscale, researchers built the world’s tiniest hammer — the μHammer, or “microHammer.” The μHammer is a cellular-scale machine capable of applying a variety of mechanical forces to neural progenitor cells, brain-centric stem cells. Eventually, scientists hope to use the hammer to apply forces to neurons and neural tissue.

The hammer piggybacks on existing cell-sorting technology which isolates individual cells for diagnostics and immunotherapy. Once isolated, the machine can apply a range of forces. Post-impact structural and biomechanical analysis will allow scientists study the effects of focus in near real-time.

Nearly every other year the transistors that power silicon computer chip shrink in size by half and double in performance, enabling our devices to become more mobile and accessible. But what happens when these components can’t get any smaller? George Tulevski researches the unseen and untapped world of nanomaterials. His current work: developing chemical processes to compel billions of carbon nanotubes to assemble themselves into the patterns needed to build circuits, much the same way natural organisms build intricate, diverse and elegant structures. Could they hold the secret to the next generation of computing?

TEDTalks is a daily video podcast of the best talks and performances from the TED Conference, where the world’s leading thinkers and doers give the talk of their lives in 18 minutes (or less). Look for talks on Technology, Entertainment and Design — plus science, business, global issues, the arts and much more.
Find closed captions and translated subtitles in many languages at http://www.ted.com/translate

Follow TED news on Twitter: http://www.twitter.com/tednews
Like TED on Facebook: https://www.facebook.com/TED

Read more

Can science really enable us stick around on Earth forever? Experts haven’t developed ways to make us invincible, immortal beings who are unsusceptible to physical trauma or starvation. However, studies have been going on to make aging just another preventable disease. Effectively stalling the deterioration of our bodies would then mean humans could live indefinitely.

Peter Diamandis, co-founder of San Diego-based genotype research facility Human Longevity, Inc., spoke at the Singularity University in California last September about challenging aging and the deterioration of the body. The key to unlocking an indefinite lifespan was to improve the repair mechanisms of the body, said Diamandis. His research teams consider the possibility of using stem cells or nanomachines to regenerate our bodies.

Last year, researchers from the Stanford University School of Medicine have used chromosome extensions that dramatically increased the rate of cell division, a growth mechanism of our bodies that weakens over time. The development hints at a chance to turn back the biological clock.

Read more

Nice.


When you think of diamonds, rings and anniversaries generally come to mind. But one day, the first thing that will come to mind may be bone surgery. By carefully designing modified diamonds at the nano-scale level, a Missouri University of Science and Technology researcher hopes to create multifunctional diamond-based materials for applications ranging from advanced composites to drug delivery platforms and biomedical imaging agents.

Dr. Vadym Mochalin, an associate professor of chemistry and materials science and engineering at Missouri S&T, is characterizing and modifying 5-nanometer nanodiamond particles produced from expired military grade explosives so that they can be developed to perform specific tasks. His current research studies their use as a filler in various types of composites.

Mochalin hopes to develop a way to uniformly incorporate the nanodiamonds and form strong chemical bonds between them to help design composite structures that can be used in medical applications, oil drilling bits, polishing and lubricating compositions, and even energy storage systems. Nanodiamonds are the ideal choice for such applications because they are mechanically strong, chemically stable and non-toxic. They can also form bonds with many other materials due to their tailorable surface chemistry.

Nice read.


The results demonstrate that the positions of tens of thousands of atoms can be precisely identified and then fed into quantum mechanics calculations to correlate imperfections and defects with material properties at the single-atom level. This research will be published Feb 2. in the journal Nature.

Jianwei (John) Miao, a UCLA professor of physics and astronomy and a member of UCLA’s California NanoSystems Institute, led the international team in mapping the atomic-level details of the bimetallic nanoparticle, more than a trillion of which could fit within a grain of sand.

“No one has seen this kind of three-dimensional structural complexity with such detail before,” said Miao, who is also a deputy director of the Science and Technology Center on Real-Time Functional Imaging. This new National Science Foundation-funded consortium consists of scientists at UCLA and five other colleges and universities who are using high-resolution imaging to address questions in the physical sciences, life sciences and engineering.

Watch out for the black holes in those QC chips.


Eindhoven professor Rembert Duine has proposed a way to simulate black holes on an electronic chip. This makes it possible to study fundamental aspects of black holes in a laboratory on earth. Additionally, the underlying research may be useful for quantum technologies. Duine (also working at Utrecht University) and colleagues from Chile published their results today in Physical Review Letters.

“Right now, it’s purely theoretical,” says Duine, “but all the ingredients already exist. This could be happening in a lab one or two years from now.” One possibility is in the group of Physics of Nanostructures in the Department of Applied Physics. According to Duine, in these labs experiments are being done that are necessary to create this type of black holes.

Event horizon

I cannot wait. However, wish they would look at cancer treatment as one of the first trials.


SCIENCE

Medical Robotics: Microrobots Could Be The Answer To Future Medicine

More specifically, nanorobotics refers to the theoretical nanotechnology engineering discipline of designing and building nanorobots for medical aid.

Yep; devices and computers will no longer be needed given the advancements that are coming in areas of Quantum, Synbio, nanotech, etc.

However, with QC crystal technology and the work done on parallel states we have some very interesting things coming in communications, entertainment/ media, etc.


The long read: For decades, computers have got smaller and more powerful, enabling huge scientific progress. But this can’t go on for ever. What happens when they stop shrinking?

Read more

Could we eventually see a day where we have cell circuitry nanobot pill that eliminates hunger and obesity as replacement to gastric bypasses? Maybe.


The human body responds to starving conditions, such as famine, to promote the chance of survival. It reduces energy expenditure by stopping heat production and promotes feeding behavior. These “hunger responses” are activated by the feeling of hunger in the stomach and are controlled by neuropeptide Y (NPY) signals released by neurons in the hypothalamus. However, how NPY signaling in the hypothalamus elicits the hunger responses has remained unknown.

Sympathetic motor neurons in the medulla oblongata are responsible for heat production by brown adipose tissue (BAT). Researchers centered at Nagoya University have now tested whether the heat-producing neurons respond to the same hypothalamic NPY signals that control hunger responses. They injected NPY into the hypothalamus of rats and tested the effect on heat production. Under normal conditions, blocking inhibitory GABAergic receptors or stimulating excitatory glutamatergic receptors in the sympathetic motor neurons induced heat production in BAT. After NPY injection, stimulating glutamatergic receptors did not produce heat, but inhibiting GABAergic receptors did. The study was recently reported in Cell Metabolism.

Retrograde and anterograde tracing with fluorescent dyes revealed which brain region provided the inhibitory GABAergic inputs to heat-producing motor neurons.

Today scientists at the Institute for Research in Biomedicine (IRB Barcelona) present a study in Cell (“The in vivo architecture of the exocyst provides structural basis for exocytosis”) where they have been able to observe protein nanomachines (also called protein complexes)—the structures responsible for performing cell functions—for the first time in living cells and in 3D. This work has been done in collaboration with researchers at the University of Geneva in Switzerland and the Centro Andaluz de Biología del Desarrollo in Seville.

3D observation of nanomachines in vivo

On the left, in vivo image of nanomachines using current microscopy techniques; on the right, the new method allows 3D observation of nanomachines in vivo and provides 25-fold improvement in precision (O. Gallego, IRB Barcelona)

Read more