Toggle light / dark theme

Michigan State University and Stanford University scientists have invented a nanoparticle that eats away—from the inside out—portions of plaques that cause heart attacks.

Bryan Smith, associate professor of biomedical engineering at MSU, and a team of scientists created a “Trojan Horse” nanoparticle that can be directed to eat debris, reducing and stabilizing plaque. The discovery could be a potential treatment for atherosclerosis, a leading cause of death in the United States.

The results, published in the current issue of Nature Nanotechnology, showcases the nanoparticle that homes in on due to its high selectivity to a particular immune cell type—monocytes and macrophages. Once inside the macrophages in those plaques, it delivers a drug agent that stimulates the cell to engulf and eat cellular debris. Basically, it removes the diseased/dead in the plaque core. By reinvigorating the macrophages, size is reduced and stabilized.

We’re still a long way from Star Trek-style tricorders that can instantly diagnose disease, but medical startup Nanox is hoping to bring a little of the 24th century to a hospital near you. The company has unveiled a new low-cost X-ray scanner called the Nanox. Arc. It hopes to deploy 15,000 units in the coming years, with the aim of making medical scans more available and affordable.

Nanox was founded in 2016 by Japanese venture capitalist Hitoshi Masuya in partnership with Sony. The consumer electronics giant later bowed out, but Masuya joined forces with current CEO Ran Poliakine to split the company’s operations between Israel and Japan. Nanox has now raised a total of $55 million to fund the development of Nanox. Arc, which supposedly offers the same capabilities of traditional X-ray machines with a much smaller footprint and lower operating costs.

Current X-ray machinery is bulky, requiring arrays of rotating tubes with superheated filaments that produce electron clouds. When moved near a metal anode, the filament produces the X-rays needed for imaging. These giant analog contraptions require heavy shielding to keep patients safe, and they use a lot of power. There’s also a substantial upfront cost that can run $2–3 million. The Nanox. Arc, on the other hand, uses silicon micro-electromechanical systems (MEMs) in the form of more than 100 million molybdenum nano-cones that generate electrons.

A dumbbell-shaped nanoparticle powered just by the force and torque of light has become the world’s fastest-spinning object.

Scientists at Purdue University created the , which revolves at 300 billion revolutions per minute. Or, put another way, half a million times faster than a dentist’s drill.

In addition, the silica nanoparticle can serve as the world’s most sensitive detector, which researchers hope will be used to measure the friction created by .

#biophotonics #photonics


ONNA, Japan, Jan. 13, 2020 — Scientists at the Okinawa Institute of Science and Technology (OIST) Graduate University have developed a light-based device that can act as a biosensor, detecting biological substances in materials, such as harmful pathogens in food. The scientists said that their tool, an optical microresonator, is 280× more sensitive than current industry-standard biosensors, which can detect only cumulative effects of groups of particles, not individual molecules.

To detect the quantum friction of empty space, scientists are going for a spin.

A twirling nanoparticle, suspended in a laser beam inside of a vacuum, can measure tiny twisting forces, making it the most sensitive detector of torque yet created. Researchers say the device could one day detect an elusive quantum effect called vacuum friction.

The suspended nanoparticle can spin more than 300 billion times a minute. “This is the fastest human-made rotor in the world,” says physicist Tongcang Li of Purdue University in West Lafayette, Ind.

Drastic miniaturization of electronics and ingression of next-generation nanomaterials into space technology have provoked a renaissance in interplanetary flights and near-Earth space exploration using small unmanned satellites and systems. As the next stage, the NASA’s 2015 Nanotechnology Roadmap initiative called for new design paradigms that integrate nanotechnology and conceptually new materials to build advanced, deep-space-capable, adaptive spacecraft. This review examines the cutting edge and discusses the opportunities for integration of nanomaterials into the most advanced types of electric propulsion devices that take advantage of their unique features and boost their efficiency and service life. Finally, we propose a concept of an adaptive thruster.

Interesting research paper on a new nanobot technology. I’m watching for ways in which suitable substrates for mind uploading can be constructed, and DNA self-guided assembly has potential.

Here are some excerpts and a weblink to the paper:

“…Chemical approaches have opened synthetic routes to build dynamic materials from scratch using chemical reactions, ultimately allowing flexibility in design…”

… As a realization of this concept, we engineered a mechanism termed DASH—DNA-based Assembly and Synthesis of Hierarchical materials—providing a mesoscale approach to create dynamic materials from biomolecular building blocks using artificial metabolism. DASH was developed on the basis of nanotechnology that uses DNA as a generic material ranging from nanostructures to hydrogels, for enzymatic substrates, and as linkers between nanoparticles…”

“…Next, to illustrate the potential uses of self-generated materials, we created various hybrid functional materials from the DASH patterns. The DASH patterns served as a versatile mesoscale scaffold for a diverse range of functional nanomaterials beyond DNA, ranging from proteins to inorganic nanoparticles, such as avidin, quantum dots, and DNA-conjugated gold nanoparticles (AuNPs) (Fig. 4D, figs. S37 and S38, and Supplementary Text). The generated patterns were also rendered functional with catalytic activity when conjugated with enzymes (figs. S39 and S40 and Supplementary Text). We also showed that the DNA molecules within the DASH patterns retained the DNA’s genetic properties and that, in a cell-free fashion, the materials themselves successfully produced green fluorescent proteins (GFPs) by incorporating a reporter gene for sfGFP (Fig. 4E and figs. S9 and S41) (40). The protein production capability of the materials established the foundation for future cell-free production of proteins, including enzymes, in a spatiotemporally controlled manner.

An international team of cancer researchers has developed a new type of copper-based nanoparticle that can kill tumor cells in mice. While the technology showed effectiveness on its own, by combining it with immunotherapy the scientists say it produced long-lasting effects, quickly killing off any cancer cells that dared to return.

The therapy centers on new knowledge around tumors’ aversion to certain types of nanoparticles. The research team made up of scientists from KU Leuven, the University of Bremen, the Leibniz Institute of Materials Engineering, and the University of Ioannina, discovered that tumor cells were particularly sensitive to nanoparticles made from copper and oxygen.

Once these copper oxide nanoparticles enter a living organism they dissolve and become toxic, killing off cancer cells that happen to be in the area. Key to the new nanoparticle design was the addition of iron oxide, which the researchers say enables it to kill off cancer cells while leaving healthy cells intact.