Toggle light / dark theme

The genome editing technology CRISPR has emerged as a powerful new tool that can change the way we treat disease. The challenge when altering the genetics of our cells, however, is how to do it safely, effectively, and specifically targeted to the gene, tissue and organ that needs treatment. Scientists at Tufts University and the Broad Institute of Harvard and MIT have developed unique nanoparticles comprised of lipids—fat molecules—that can package and deliver gene editing machinery specifically to the liver. In a study published today in the Proceedings of the National Academy of Sciences, they have shown that they can use the lipid nanoparticles (LNPs) to efficiently deliver the CRISPR machinery into the liver of mice, resulting in specific genome editing and the reduction of blood cholesterol levels by as much as 57%—a reduction that can last for at least several months with just one shot.

The problem of high cholesterol plagues more than 29 million Americans, according to the Centers for Disease Control and Prevention. The condition is complex and can originate from multiple as well as nutritional and lifestyle choices, so it is not easy to treat. The Tufts and Broad researchers, however, have modified one gene that could provide a protective effect against elevated cholesterol if it can be shut down by gene editing.

The gene that the researchers focused on codes for the angiopoietin-like 3 enzyme (Angptl3). That enzyme tamps down the activity of other enzymes—lipases—that help break down cholesterol. If researchers can knock out the Angptl3 gene, they can let the lipases do their work and reduce levels of cholesterol in the blood. It turns out that some lucky people have a natural mutation in their Angptl3 gene, leading to consistently low levels of triglycerides and low-density lipoprotein (LDL) cholesterol, commonly called “bad” cholesterol, in their bloodstream without any known clinical downsides.

Roundworms don’t have eyes or the light-absorbing molecules required to see. Yet, new research shows they can somehow sense color. The study, published in the journal Science, suggests worms use this ability to assess the risk of feasting on potentially dangerous bacteria that secrete blue toxins. The researchers pinpointed two genes that contribute to this spectral sensitivity and are conserved across many organisms, including humans.

“It’s amazing to me that a —with neither eyes nor the molecular machinery used by eyes to detect colors—can identify and avoid a toxic bacterium based, in part, on its ,” says H. Robert Horvitz, the David H. Koch Professor of Biology at MIT, a member of the McGovern Institute for Brain Research and the Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute Investigator, and the co-senior author of the study. “One of the joys of being a biologist is the opportunity to discover things about nature that no one has ever imagined before.”

The roundworm in question, Caenorhabditis elegans, is only about a millimeter long. Despite their minute stature and simple nervous system, these nematodes display a complex repertoire of behaviors. They can smell, taste, sense touch, react to temperature, and even escape or change their feeding patterns in response to bright, . Although researchers once thought that these bury themselves deep in soil, it’s becoming increasingly clear that C. elegans prefers compost heaps above ground that offer some sun exposure. As a result, roundworms may have a need for light-and color-sensing capabilities after all.

A new type of 3D-printed battery which uses electrodes made from vegetable starch and carbon nanotubes could provide mobile devices with a more environmentally-friendly, higher-capacity source of power.

A team of engineers led from the University of Glasgow have developed the battery in a bid to make more sustainable batteries capable of storing and delivering power more efficiently. The battery’s design and fabrication is outlined in a paper published in the Journal of Power Sources.

Lithium-ion batteries provide a useful combination of lightweight, compact form factors and the ability to withstand many cycles of charging and discharging. That has made them ideally suited for use in a wide array of devices, including laptops, mobile phones, smart watches, and electric vehicles.

Using a new class of nanoparticles that are two thousand times thinner than a human hair, Sakhrat Khizroev, a professor of electrical and computer engineering at the University’s College of Engineering, hopes to unlock the secrets of the brain.

The neurosurgeon who examined Sakhrat Khizroev after he lost his eyesight in a horrible accident told the young scientist that his vision would come back slowly. Then, after months of living in darkness, it finally started to return.

At first, the images were blurry and fragmented, as if someone were looking through a narrow window and seeing only part of a picture. But with each passing day, everything Khizroev looked at appeared clearer, sharper.

The lives of infomorphs (or ‘cyberhumans’) who have no permanent bodies but possess near-perfect information-handling abilities, will be dramatically different from ours. Infomorphs will achieve the ultimate morphological freedom. Any infomorph will be able to have multiple cybernetic bodies which can be assembled and dissembled at will by nanobots in the physical world if deemed necessary, otherwise most time will be spent in the multitude of virtual bodies in virtual enviro… See More.


“I am not a thing a noun. I seem to be a verb, an evolutionary process an integral function of the Universe.” Buckminster Fuller

The term ‘Infomorph’ was first introduced in “The Silicon Man” by Charles Platt in 1991 and later popularized by Alexander Chislenko in his paper “Networking in the Mind Age”: “The growing reliance of system connections on functional, rather than physical, proximity of their elements will dramatically transform the notions of personhood and identity and create a new community of distributed ‘infomorphs’ advanced informational entities that will bring the ongoing process of liberation of functional structures from material dependence to its logical conclusions. The infomorph society will be built on new organizational principles and will represent a blend of a superliquid economy, cyberspace anarchy and advanced consciousness.”

The new post-Singularity system will inherit many of today’s structures but at the same time will develop new traits beyond our current human comprehension. The ability of future machines and posthumans alike to instantly transfer knowledge and directly share experiences with each other will lead to evolution of intelligence from the hive ontology of individual biological minds to the global hyperconnected society of digital minds.

A new class of quantum dots deliver a stable stream of single, spectrally tunable infrared photons under ambient conditions and at room temperature, unlike other single photon emitters. This breakthrough opens a range of practical applications, including quantum communication, quantum metrology, medical imaging and diagnostics, and clandestine labeling.

“The demonstration of high single-photon purity in the infrared has immediate utility in areas such as quantum key distribution for secure communication,” said Victor Klimov, lead author of a paper published today in Nature Nanotechnology by Los Alamos National Laboratory scientists.

The Los Alamos team has developed an elegant approach to synthesizing the colloidal-nanoparticle structures derived from their prior work on visible light emitters based on a core of cadmium selenide encased in a cadmium sulfide shell. By inserting a mercury sulfide interlayer at the core/shell interface, the team turned the into highly efficient emitters of that can be tuned to a specific wavelength.

The torsion balance contains a rigid balance beam suspended by a fine thread as an ancient scientific instrument that continues to form a very sensitive force sensor to date. The force sensitivity is proportional to the lengths of the beam and thread and inversely proportional to the fourth power of the diameter of the thread; therefore, nanomaterials that support the torsion balances should be ideal building blocks. In a new report now published on Science Advances, Lin Cong and a research team in quantum physics, microelectronics and nanomaterials in China have detailed a torsional balance array on a chip with the highest sensitivity level. The team facilitated this by using a carbon nanotube as the thread and a monolayer graphene coated with aluminum films as the beam and mirror. Using the experimental setup, Cong et al. measured the femtonewton force exerted by a weak laser. The balances on the chip served as an ideal platform to investigate fundamental interactions up to zeptonewton in accuracy.

A modern role for ancient scientific instruments

The torsion pendulum is an ancient scientific instrument used to discover Coulomb’s law in 1785 and to determine the density of Earth in 1798. The instrument is useful across a range of applications including existing scientific explorations of precisely determining the gravitational constant. The most efficient method to achieve high sensitivity in the setup is by reducing the diameter of the suspension thread as much as possible. For instance, in 1931, Kappler et al. used a centimeters-long thread to develop a highly sensitive torsion balance to set a record for a hitherto unattained intrinsic force sensitivity. At present, carbon nanotubes form one of the strongest and thinnest materials known. In this work, the team synthesized ultra-long carbon nanotubes (CNTs) and large-area graphene to substantially increase the lengths of the balance beam and suspension thread to significantly improve the sensitivity of the instrument.

Should interest those into links on aging/longevity and neuroscience.


The mammalian center for learning and memory, hippocampus, has a remarkable capacity to generate new neurons throughout life. Newborn neurons are produced by neural stem cells (NSCs) and they are crucial for forming neural circuits required for learning and memory, and mood control. During aging, the number of NSCs declines, leading to decreased neurogenesis and age-associated cognitive decline, anxiety, and depression. Thus, identifying the core molecular machinery responsible for NSC preservation is of fundamental importance if we are to use neurogenesis to halt or reverse hippocampal age-related pathology.

While there are increasing number of tools available to study NSCs and neurogenesis in mouse models, one of the major hurdles in exploring this fundamental biological process in the human brain is the lack of specific NSCs markers amenable for advanced imaging and in vivo analysis. A team of researchers led by Dr. Mirjana Maletić-Savatić, associate professor at Baylor College of Medicine and investigator at the Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, and Dr. Louis Manganas, associate professor at the Stony Brook University, decided to tackle this problem in a rather unusual way. They reasoned that if they could find proteins that are present on the surface of NSCs, then they could eventually make agents to “see” NSCs in the .

“The ultimate goal of our research is to maintain neurogenesis throughout life at the same level as it is in the young brains, to prevent the decline in our cognitive capabilities and reduce the tendency towards mood disorders such as depression, as we age. To do that, however, we first need to better understand this elusive, yet fundamental process in humans. However, we do not have the tools to study this process in live humans and all the knowledge we have gathered so far comes from analyses of the postmortem brains. And we cannot develop tools to detect this process in people because existing NSC markers are present within cells and unreachable for in vivo visualization,” Maletić-Savatić said. “So, in collaboration with our colleagues from New York and Spain, we undertook this study to find surface markers and then develop tools such as ligands for positron emission tomography (PET) to visualize them using advanced real-time in vivo brain imaging.”

Circa 2013


One of the greatest aspirations of the human mind has been to realize machines that surpass its cognitive intelligence. The rapid expansion in computing power, about to exceed the equivalent of the human brain, has yet to produce such a machine. The article by Neftci et al. in PNAS (1) offers a refreshing and humbling reminder that the brain’s cognition does not arise from exacting digital precision in high-performance computing, but rather emerges from an extremely efficient and resilient collective form of computation extending over very large ensembles of sluggish, imprecise, and unreliable analog components. This observation, first made by John von Neumann in his final opus (2), continues to challenge scientists and engineers several decades later in figuring and reproducing the mechanisms underlying brain-like forms of cognitive computing.

Related developments are currently unfolding in collaborative initiatives engaging scientists and engineers, on a grander scale, in advancing neuroscience toward understanding the brain. In parallel with the Human Brain Project in Europe, the Brain Research through Advancing Innovative Neurotechnologies Initiative promises groundbreaking advances in enabling tools for revolutionizing neuroscience by developing nanotechnology to probe brain function at greatly increased spatial and temporal detail. Engineers are poised to contribute even further in revolutionizing such developments in neuroscience. In this regard it is helpful to relate the inquisitive nature of science—analysis—to the constructive power of engineering, synthesis.