Toggle light / dark theme

The world has experienced a technological leap in the last decade. Innovations such as smartphones and tablets, 3D printing, artificial intelligence, and blockchain are coming with us. As is well known, these technologies have become indispensable, not only causing hype in one or the other but also permanently changing our daily lives and ways of working. Will this development slow down? I do not think so, the exact opposite. In the next 10 years, you can expect even more breakthroughs than you can imagine today.

In recent years, engineers and computer scientists have created a wide range of technological tools that can enhance fitness training experiences, including smart watches, fitness trackers, sweat-resistant earphones or headphones, smart home gym equipment and smartphone applications. New state-of-the-art computational models, particularly deep learning algorithms, have the potential to improve these tools further, so that they can better meet the needs of individual users.

Researchers at University of Brescia in Italy have recently developed a computer vision system for a smart mirror that could improve the effectiveness of fitness training both in home and gym environments. This system, introduced in a paper published by the International Society of Biomechanics in Sports, is based on a deep learning algorithm trained to recognize human gestures in video recordings.

“Our commercial partner ABHorizon invented the concept of a product that can guide and teach you during your personal fitness training,” Bernardo Lanza, one of the researchers who carried out the study, told TechXplore. “This device can show you the best way to train based on your specific needs. To develop this device further, they asked us to investigate the viability of an integrated vision system for exercise evaluation.”

You need to wait till 2023 to get them though.

Lenovo has unveiled its T1 Glasses at its Tech Life 2022 event and promises to place a full HD video-watching experience right inside your pockets, a company press release stated.

Mobile computing devices have exploded in the past few years as gaming has become more intense, and various video streaming platforms have gathered steam. The computing power of smartphones and tablets has increased manifold. Whether you want to ambush other people in an online shooting game or sit back and watch a documentary in high-definition, a device in your pocket can help you do that with ease.

Or so goes the theory. Most CIM chips running AI algorithms have solely focused on chip design, showcasing their capabilities using simulations of the chip rather than running tasks on full-fledged hardware. The chips also struggle to adjust to multiple different AI tasks—image recognition, voice perception—limiting their integration into smartphones or other everyday devices.

This month, a study in Nature upgraded CIM from the ground up. Rather than focusing solely on the chip’s design, the international team—led by neuromorphic hardware experts Dr. H.S. Philip Wong at Stanford and Dr. Gert Cauwenberghs at UC San Diego—optimized the entire setup, from technology to architecture to algorithms that calibrate the hardware.

The resulting NeuRRAM chip is a powerful neuromorphic computing behemoth with 48 parallel cores and 3 million memory cells. Extremely versatile, the chip tackled multiple AI standard tasks—such as reading hand-written numbers, identifying cars and other objects in images, and decoding voice recordings—with over 84 percent accuracy.

The BlueWalker 3 prototype satellite is extremely bright and could interfere with celestial data.

The brightest star in the sky may not be a star for much longer. It could be a colossal internet satellite featuring a giant antenna array covering an area of 689 square feet (64 square meters) for regular cellphones to access the internet from space.


Nokia/AST SpaceMobile.

No, we’re not making this up.

A SpaceX Falcon 9 rocket will fly for a record-breaking 14th time on Saturday night (Sept. 10), launching 34 of the company’s Starlink internet satellites and a huge direct-to-smartphone connectivity test spacecraft to orbit, and you can watch it live.

The two-stage Falcon 9, topped with the Starlinks and AST SpaceMobile’s Blue Walker 3 test satellite, is scheduled to lift off from NASA’s Kennedy Space Center (KSC) in Florida Saturday at 9:10 p.m. EDT (0110 GMT on Sept. 11). Watch it live here at Space.com, courtesy of SpaceX, or directly via the company (opens in new tab).

A household microwave oven modified by a Cornell engineering professor is helping to cook up the next generation of cellphones, computers and other electronics after the invention was shown to overcome a major challenge faced by the semiconductor industry.

The research is detailed in a paper published in Applied Physics Letters. The lead author is James Hwang, a research professor in the department of materials science and engineering.

As microchips continue to shrink, silicon must be doped, or mixed, with higher concentrations of phosphorus to produce the desired current. Semiconductor manufacturers are now approaching a critical limit in which heating the highly doped materials using traditional methods no longer produces consistently functional semiconductors.

Apple could become the first commercially available smartphone with a satellite in the U.S.

Just a day after Apple announced the iPhone 14’s emergency SOS via satellite feature, SpaceX chief executive officer Elon Musk revealed that SpaceX had talked with Apple Inc about using Starlink connectivity.

We’ve had some promising conversations with Apple about Starlink connectivity.


1, 2

He tweeted on Thursday that the companies have had “promising conversations”, adding that Apple’s iPhone team is “super smart”. “For sure, closing link from space to phone will work best if phone software & hardware adapt to space-based signals vs Starlink purely emulating cell tower,” Musk said on Twitter.

Ray Kurzweil predicted Technological Singularity nearly 20 years ago. Elon Musk could enable a world of economic abundance with real world AI. Robotaxi and Teslabot will transform the world more than car and the first industrial revolution.

Tesla sells Model Ys for about $60000, but it currently costs them about $30000–40000 to make them. A Teslabot is 1/30th of the mass of a Model Y. It will use 1/30th of the batteries. The software is an overall cost of development. If billions of bots are produced then the cost would trend toward the cost of the hardware plus Apple iPhone-like margins including the software (say 40% gross margin). At Model Y cost of $30k then the hardware cost for Teslabot will go to $1000. $2000 with margins and software. A bot can work for 8,000 hours in a year. 8,760 hours in a year. $2000 divided by 8,000 hours is $0.25. If you add 10 cents per hour for electricity then it is $0.35 per hour. Going beyond that is bots can work in the factory and work cheaper than humans. Currently 15,000 workers in Tesla China factory. Replace all of them with $0.35 per hour bots. Reduce labor cost component. If a lot of bots can increase production rates. by 2X then all costs spread over more units. Bot-produced solar and batteries can lower the cost of energy by vastly increasing the supply. Those trends could get us to $500‑1000 per bot costs and lower energy costs. Having virtually unlimited labor costing less than 35 cents per hour will be transformational.

The Technological Singularity is a predicted point when technological growth becomes radically faster.

Real World AI would be general artificial human-level intelligence. Capabilities to provide broad levels of human jobs and tasks.

Teslabots able to perform loading and deliveries to massively boost the supply chain.
Teslabots able to perform manufacturing tasks in the factory.
Teslabots able to use machines built for humans.
Teslabots able to work in factories to make factories self replicating.
Teslabots able to perform mining.

These capabilities would make economic growth massively exponential.