Toggle light / dark theme

US Defence Secretary Mark Esper on Friday ruled out allegations of unfair competition in the awarding of a US$10-billion cloud computing contract to Microsoft.

“I am confident it was conducted freely and fairly, without any type of outside influence,” Esper told a news conference in Seoul, South Korea.

Formally called the Joint Enterprise Defence Infrastructure, or JEDI, the contract was awarded to Microsoft on 25 October, and the lucrative deal could span 10 years.

WASHINGTON — Military space operators at Vandenberg Air Force Base, California, are working with the Department of Commerce to help ease the transfer of space traffic management responsibilities, Maj. Gen. Stephen Whiting said Nov. 15.

“We’re eager for that to happen,” Whiting said at a Mitchell Institute event on Capitol Hill.

Whiting is the commander of the 14th Air Force and the Combined Force Space Component Command under U.S. Space Command. He oversees the two major organizations — the Combined Space Operations Center and the 18th Space Control Squadron — that help to maintain a catalog of space objects and notify satellite operators around the world when other satellites or debris threaten to collide with spacecraft.

There’s reason to think fruits of the collaboration may interest the military. The Pentagon’s cloud strategy lists four tenets for the JEDI contract, among them the improvement of its AI capabilities. This comes amidst its broader push to tap tech-industry AI development, seen as far ahead of the government’s.


Microsoft’s $10 billion Pentagon contract puts the independent artificial-intelligence lab OpenAI in an awkward position.

A combined team of researchers from Lawrence Livermore National Laboratory in the U.S. and Atomic Weapons Establishment in the U.K. has found that rapidly compressing lead to planetary-core type pressures makes it stronger than steel. In their paper published in the journal Physical Review Letters, the group describes how they managed to compress the metal so strongly without melting it.

Defining strength in a material is difficult. Strength can refer to a material’s ability withstand bending or breaking under certain conditions. Making things even more complicated is that the strength of any given material can change under varying conditions—such as when heat or compression are applied. In this new effort, the researchers showed just how difficult it can be to nail down how strong a material is—in this case, lead.

Lead is not very strong. Pressing a fingernail against a car’s battery terminal is enough to create indentations, for example. But the researchers with this new effort report that the metal can be strengthened considerably by exerting .

Historically, the pharmaceutical industry has relied on economies of scale, mixing hundreds of litres of reagents in massive reaction chambers to make millions of doses of a single drug. Bio-MOD and related systems, however, cycle small amounts of chemicals through a series of thumb-sized chambers that can produce hundreds or thousands of doses of multiple drugs, all in less than 24 hours. Several teams have won support for this vision from the US military: the Defense Advanced Research Projects Agency (DARPA) has handed out more than US$15 million to support these do-it-yourself drug-makers.


Engineers are miniaturizing pharmaceutical production in the hope of making it portable and inexpensive.

In the Marshall Islands, locals have a nickname for the Runit Dome nuclear-waste site: They call it ‘The Tomb’.

The sealed pit contains more than 3.1 million cubic feet (87,800 cubic meters) of radioactive waste, which workers buried there as part of efforts to clean hazardous debris left behind after the US military detonated nuclear bombs on the land.

From 1977 to 1980, around 4,000 US servicemen were tasked with cleaning up the former nuclear testing site of Enewetak Atoll. They scooped up the contaminated soil, along with other radioactive waste materials such as military equipment, concrete, and scrap metal.

The Department of Defense has awarded Dr. Gour Pati, professor of Physics and Engineering at Delaware State University a $239,908 grant from the U.S. Army to develop and build a millimeter-wave quantum sensing system at DSU.

Dr. Pati – the principal investigator – and his researchers have recognized the increasing importance of millimeter-wave sensing and imaging in commercial and military sectors, as well as how it is driving the development of low-cost sensors. Dr. Pati’s success in winning the DoD grant engages DSU scientists and students in the work of furthering this advancement.

Rydberg atoms have a hypersensitive response to microwave, millimeter-wave and terahertz radiation. They have the potential for applications in modern communications, remote sensing and many other fields, including medical science. Pati and his team will develop a real-time millimeter-wave sensor using laser-induced fluorescence in Rydberg atoms.