Toggle light / dark theme

Oscilloscopes were once commonly called CROs, for the fact that they relied on cathode ray tubes for display. Since then, technology has moved quickly, and oscilloscopes these days almost entirely rely on modern screens like LCDs. However, [lonesoulsurfer] went a different route with this fun DIY build, creating an oscilloscope with a low-resolution LED display.

Yes, the signals are shown on a 10×10 matrix made up of red LEDs. The individual pixels look nicely diffused and chunky thanks to the fact that [lonesoulsurfer] was able to source square 5mm LEDs for the build. The whole project only uses four ICs – a decade counter and a LM3914 LED driver to run the display, a 555 timer for clock input, and an LM386 op-amp for amplifying incoming signals.

With a mic fitted onboard, the oscilloscope can act as a simple music visualizer, or be used with a probe to investigate actual circuits. It may not be of great enough resolution or precision for fine work, but it’ll at least tell you if your microcontroller’s clock is running properly if you’re scratching your head about the function of a simple project.

Hannah wraps up the series by meeting DeepMind co-founder and CEO, Demis Hassabis. In an extended interview, Demis describes why he believes AGI is possible, how we can get there, and the problems he hopes it will solve. Along the way, he highlights the important role of consciousness and why he’s so optimistic that AI can help solve many of the world’s major challenges. As a final note, Demis shares the story of a personal meeting with Stephen Hawking to discuss the future of AI and discloses Hawking’s parting message.

For questions or feedback on the series, message us on Twitter @DeepMind or email [email protected].

Interviewee: Deepmind co-founder and CEO, Demis Hassabis.

Credits.

Visit https://brilliant.org/Veritasium/ to get started learning STEM for free, and the first 200 people will get 20% off their annual premium subscription. Digital computers have served us well for decades, but the rise of artificial intelligence demands a totally new kind of computer: analog.

Thanks to Mike Henry and everyone at Mythic for the analog computing tour! https://www.mythic-ai.com/
Thanks to Dr. Bernd Ulmann, who created The Analog Thing and taught us how to use it. https://the-analog-thing.org.
Moore’s Law was filmed at the Computer History Museum in Mountain View, CA.
Welch Labs’ ALVINN video: https://www.youtube.com/watch?v=H0igiP6Hg1k.

▀▀▀

Additive manufacturing, or 3D printing, can create custom parts for electromagnetic devices on-demand and at a low cost. These devices are highly sensitive, and each component requires precise fabrication. Until recently, though, the only way to diagnose printing errors was to make, measure and test a device or to use in-line simulation, both of which are computationally expensive and inefficient.

To remedy this, a research team co-led by Penn State created a first-of-its-kind methodology for diagnosing errors with machine learning in real time. The researchers describe this framework—published in Additive Manufacturing —as a critical first step toward correcting 3D-printing errors in real time. According to the researchers, this could make printing for sensitive devices much more effective in terms of time, cost and computational bandwidth.

“A lot of things can go wrong during the process for any component,” said Greg Huff, associate professor of electrical engineering at Penn State. “And in the world of electromagnetics, where dimensions are based on wavelengths rather than regular units of measure, any small defect can really contribute to large-scale system failures or degraded operations. If 3D printing a household item is like tuning a tuba—which can be done with broad adjustments—3D-printing devices functioning in the electromagnetic domain is like tuning a violin: Small adjustments really matter.”

When the next generations are fewer and less wealthy than the previous generations(who are living longer), problems can arise.

| Invest in blue-chip art for the very first time by signing up for Masterworks: https://masterworks.art/wallstreet.

See important disclosures: https://mw-art.co/37WwvbD

This video is sponsored by Masterworks.

Concetta Antico is the world’s most famous tetrachromat, meaning she has four types of color receptors (cone cells) in her eyes. Most of us have three types. As a result of this mutation, Antico can see around 100 million colors, 100 times more than other people. Antico is an artist and she says that her psychedelic color paintings depict what she perceives. I wonder though what her paintings look like through her eyes. From The Guardian:

According to Dr Kimberly Jameson, a University of California scientist who has studied Antico, just having the gene – which around 15% of women have – is not alone sufficient to be a tetrachromat, but it’s a necessary condition. “In Concetta’s case … one thing we believe is that because she’s been painting sort of continuously since the age of seven years old, she has really enlisted this extra potential and used it. This is how genetics works: it gives you the potential to do things and if the environment demands that you do that thing, then the genes kick in.”[…]

While the natural world is a positive stimulant for Antico, many man-made environments, such as a large shopping centre with fluorescent lighting, have the opposite effect. “I feel very uneasy. I actually avoid going into those kinds of buildings unless I absolutely have to,” she says. “I don’t enjoy the barrage, the massive onslaught of bits of unattractive colour. I mean, there’s a difference between looking at a row of stuff in a grocery store and looking at a row of trees. It’s like, it’s ugly, and the lights are garish. It makes me not happy.”

If you download music online, you can get accompanying information embedded into the digital file that might tell you the name of the song, its genre, the featured artists on a given track, the composer, and the producer. Similarly, if you download a digital photo, you can obtain information that may include the time, date, and location at which the picture was taken. That led Mustafa Doga Dogan to wonder whether engineers could do something similar for physical objects. “That way,” he mused, “we could inform ourselves faster and more reliably while walking around in a store or museum or library.”

The idea, at first, was a bit abstract for Dogan, a 4th-year Ph.D. student in the MIT Department of Electrical Engineering and Computer Science. But his thinking solidified in the latter part of 2020 when he heard about a new smartphone model with a camera that utilizes the infrared (IR) range of the electromagnetic spectrum that the naked eye can’t perceive. IR light, moreover, has a unique ability to see through certain materials that are opaque to visible light. It occurred to Dogan that this feature, in particular, could be useful.

The concept he has since come up with—while working with colleagues at MIT’s Computer Science and Artificial Intelligence Lab (CSAIL) and a research scientist at Facebook—is called InfraredTags. In place of the standard barcodes affixed to products, which may be removed or detached or become otherwise unreadable over time, these tags are unobtrusive (due to the fact that they are invisible) and far more durable, given that they’re embedded within the interior of objects fabricated on standard 3D printers.