Toggle light / dark theme

Cyanobacteria, an ancient lineage of bacteria that perform photosynthesis, have been found to regulate their genes using the same physics principle used in AM radio transmission.

New research published in Current Biology has found that cyanobacteria use variations in the amplitude (strength) of a pulse to convey information in single cells. The finding sheds light on how biological rhythms work together to regulate cellular processes.

In AM (amplitude modulation) radio, a wave with constant strength and frequency—called a carrier wave—is generated from the oscillation of an electric current. The audio signal, which contains the information (such as music or speech) to transmit, is superimposed onto the carrier wave. This is done by varying the amplitude of the carrier wave in accordance with the frequency of the .

The biggest battleground in the robotaxi race may be winning public trust.


Autonomous vehicles are already clocking up millions of miles on public roads, but they face an uphill battle to convince people to climb in to enjoy the ride.

A few weeks ago, I took a tour of San Francisco in one of Waymo’s self-driving cars. As we drove around the city, one thing that struck me was how comfortable people had become with not seeing a driver. Not only were there multiple driverless vehicles on any given street at any given time, but tourists no longer had their mouths agape as one drove by. The technology has become a familiar sight.

Watch this video ad-free on Nebula: https://nebula.app/videos/polyphonic-how-tool-used-math-to-create-lateralus.
If you think this video was worth $3 — https://ko-fi.com/polyphonic.

Merchandise: https://standard.tv/collections/polyphonic.
TikTok: https://tiktok.com/@watchpolyphonic.
Twitter: https://twitter.com/watchpolyphonic.
Join the Polyphonic Discord: https://discord.gg/TQUTp9r.

Theme Music by Pracs: https://soundcloud.com/pracs.

00:00 Intro.