Toggle light / dark theme

Viewers like you help make PBS (Thank you 😃). Support your local PBS Member Station here: https://to.pbs.org/DonateSPACE

Be sure to check out the Infinite Series episode Singularities Explained ‱ Singularities Explained | Infinite Se
 or How I Learned to Stop Worrying and Divide by Zero.

Support us on Patreon at / pbsspacetime.
Get your own Space Time t­shirt at http://bit.ly/1QlzoBi.
Tweet at us! @pbsspacetime.
Facebook: facebook.com/pbsspacetime.
Email us! pbsspacetime [at] gmail [dot] com.
Comment on Reddit: / pbsspacetime.

Help translate our videos!

Isaac Newton’s Universal Law of Gravitation tells us that there is a singularity to be found within a black hole, but scientists and mathematicians have found a number of issues with Newton’s equations. They don’t always accurately represent reality. Einstein’s General Theory of Relativity is a more complete theory of gravity. So does using the General Theory of Relativity eliminate the singularity? No. Not only does it concur with Newton’s Universal Law of Gravitation but it also reveals a second singularity, not at the center of the black hole but at the event horizon.

Previous Episode:

Officials of the U.S. Defense Advanced Research Projects Agency (DARPA) in Arlington, Va., issued a broad agency announcement (HR001124S0029) for the Artificial Intelligence Quantified (AIQ) project.

AIQ seeks to find ways of assessing and understanding the capabilities of AI to enable mathematical guarantees on performance. Successful use of military AI requires ensuring safe and responsible operation of autonomous and semi-autonomous technologies.

Emergent phenomena: large-scale patterns and organization arise from innumerable interactions between component parts.

The behavior of a complex system might be considered emergent if it can’t be predicted from the properties of the parts alone.


The puzzle of emergence asks how regularities emerge on macro scales out of uncountable constituent parts. A new framework has researchers hopeful that a solution is near.

Fields Medalist Terence Tao explains how proof checkers and AI programs are dramatically changing mathematics.

By Christoph Drösser

Mathematics is traditionally a solitary science. In 1986 Andrew Wiles withdrew to his study for seven years to prove Fermat’s theorem. The resulting proofs are often difficult for colleagues to understand, and some are still controversial today. But in recent years ever larger areas of mathematics have been so strictly broken down into their individual components (“formalized”) that proofs can be checked and verified by computers.

This is a series of videos that I decided to make on Georg Cantor’s groundbreaking works published in 1,895 and 1,897 titled Contributions to the Founding of the Theory of Transfinite Numbers.

This work could probably be counted among the most influential and significant works in mathematical history — Cantor’s transfinite numbers changed the face of mathematics completely (although, not to everyone’s pleasure). The impact of Cantor’s work can’t be underestimated.

In this series of videos I will go through the definitions of aggregate, cardinal numbers, simply ordered aggregates, ordinal types and ordinal numbers amongst others. I will also go through some of the properties of these objects including arithmetical operations of cardinal numbers and ordinal types and culminating in the arithmetic of the ordinal numbers of the second number class.

A simple concept of decay and fission of “magnetic quivers” helps to clarify complex quantum physics and mathematical structures.

Researchers employed magnetic quivers to delve into the fundamentals of quantum physics, specifically through the lens of supersymmetric quantum field theories. They have provided a novel interpretation of the Higgs mechanism, illustrating how particles gain mass and the potential decay and fission within QFTs.

Pioneering Quantum Physics Study

The American theoretical physicist, Brian Greene explains various hypotheses about the causation of the big bang. Brian Greene is an excellent science communicator and he makes complex cosmological concepts more easy to understand.

The Big Bang explains the evolution of the universe from a starting density and temperature that is currently well beyond humanity’s capability to replicate. Thus the most extreme conditions and earliest times of the universe are speculative and any explanation for what caused the big bang should be taken with a grain of salt. Nevertheless that shouldn’t stop us to ask questions like what was there before the big bang.

Brian Greene mentions the possibility that time itself may have originated with the birth of the cosmos about 13.8 billion years ago.

To understand how the Universe came to be, scientists combine mathematical models with observations and develop workable theories which explain the evolution of the cosmos. The Big Bang theory, which is built upon the equations of classical general relativity, indicates a singularity at the origin of cosmic time.

However, the physical theories of general relativity and quantum mechanics as currently realized are not applicable before the Planck epoch, which is the earliest period of time in the history of the universe, and correcting this will require the development of a correct treatment of quantum gravity.

Certain quantum gravity treatments imply that time itself could be an emergent property. Which leads some physicists to conclude that time did not exist before the Big Bang. While others are open to the possibility of time preceding the big bang.