Toggle light / dark theme

A team of researchers from the University of California and Fudan University has developed a way to use a single molecule magnet as a scanning magnetometer. In their paper published in the journal Science, the group outlines their research which involved demonstrating their sensor scanning the spin and magnetic properties of a molecule embedded in another material.

As scientists continue their quest to squeeze ever more data onto increasingly smaller storage devices, they are exploring the possibility of using the magnetic state of a or even an atom—likely the smallest possible memory element type. In this new effort, the researchers have demonstrated that it is possible to use a single molecule affixed to a sensor to read the properties of a single molecule in another material.

To create their sensor and , the researchers first absorbed magnetic of Ni(cyclopentadienyl)2 onto a plate coated with silver. Then, they pulled a nickelocene molecule from the silver surface and applied it to the tip of a scanning tunneling microscope sensor. Next, they heated an adsorbate-covered surface to 600 millikelvin and then moved the sensor tipped with the single molecule close to the surface and read the signals received by the probe as the two molecules interacted.

Read more

The space snowman known as 2014 MU69 or Ultima Thule added to its celebrity today by showing up on the cover of the journal Science, with the first peer-reviewed results from an encounter with NASA’s New Horizons spacecraft laid out within.

Close study of the two-lobed object — which orbits 4 billion miles from the sun within a sparse belt of icy material known as the Kuiper Belt — could shed light on how the solar system was formed, said New Horizons principal investigator Alan Stern, a planetary scientist at the Southwest Research Institute.

“We’re looking into the well-preserved remnants of the ancient past,” Stern said in a news release. “There is no doubt that the discoveries made about Ultima Thule are going to advance theories of solar system formation.”

Read more

The device opens the door to invisible displays on walls and windows – displays that would be bright when turned on but see-through when turned off — or in futuristic applications such as light-emitting tattoos, according to the researchers.

“The materials are so thin and flexible that the device can be made transparent and can conform to curved surfaces,” said Der-Hsien Lien, a postdoctoral fellow at UC Berkeley and a co-first author along with Matin Amani and Sujay Desai, both doctoral students in the Department of Electrical Engineering and Computer Sciences at Berkeley.

Their study was published March 26 in the journal Nature Communications. The work was funded by the National Science Foundation and the Department of Energy.

Read more

A team of researchers affiliated with several institutions in China has developed a hydrogel that can stop bleeding from a punctured artery. In their paper published in the journal Nature Communications, the group describes how the hydrogel was made and how well it worked on test animals.

Uncontrolled bleeding is a very serious situation, both during surgical procedures and as a result of trauma. In most cases, it is the result of damage to a major artery or an organ like the liver. In all cases, immediate action must be taken or the victim will die. Currently, treatment for such involves clamping the artery and then using sutures to close the wound. In the past, researchers have attempted to create a type of glue to stem such wounds, but thus far, none of them has worked as hoped—they were either made of or were not strong enough to stand up to the high liquid pressure in the bloodstream. In this new effort, the researchers have developed a new type of that solves both problems.

The researchers report that the hydrogel is made of water, gelatin and a mix of proteins and other chemicals. It was designed to be as close as possible in structure to human connective tissues. When UV light shines on the gel, it thickens and solidifies, adhering to the wound, preventing blood from flowing out. And it does so in just 20 to 30 seconds. The researchers note that it could also stand up to 290-mmHg blood pressure—much higher than normal.

Read more

Huge plastic waste dumps float in the Oceans bigger than continents. Some 10% of world’s plastic waste finds its way into the sea and ends up in the central regions where slow moving circular currents trap debris into one large constantly moving mass of plastic. This is slowly being broken down into a plastic dust that marine wildlife mistake for food. Small fish consume tiny bits of plastic as if they were normal plankton. Those fish are then consumed by larger species and the plastic contamination moves up the food chain. Over a million seabirds, as well as more than 100 thousand marine mammals, die every year from ingesting plastic debris. Some researchers estimate that there are over six kilos of plastic for every kilo of naturally occurring plankton in the Pacific plastic waste dump.

Dead seabirds having mistaken plastics for food, have been found with discarded plastic lighters, water bottle caps and scraps of plastic bags in their stomachs. / Oceanic gyres: the circular movement of the ocean waters concentrates the plastic in the centre of the oceans.

But maybe things are not as bad as it looks: scientists working on the pollution saw that it did not grow in 22 years, even if the plastic production grew fourfold. An organism may be eating plastic in the ocean, but whether the bug is green or mean remains to be seen.

Read more

Some of the most famous scientific discoveries happened by accident. From Teflon and the microwave oven to penicillin, scientists trying to solve a problem sometimes find unexpected things. This is exactly how we created phosphorene nanoribbons – a material made from one of the universe’s basic building blocks, but that has the potential to revolutionize a wide range of technologies.

We’d been trying to separate layers of phosphorus crystals into two-dimensional sheets. Instead, our technique created tiny, tagliatelle-like ribbons one single atom thick and only 100 or so atoms across, but up to 100,000 atoms long. We spent three years honing the production process, before announcing our findings.

Read more

Washington State University researchers have developed an environmentally-friendly, plant-based material that for the first time works better than Styrofoam for insulation.

The is mostly made from nanocrystals of cellulose, the most abundant plant material on earth. The researchers also developed an environmentally friendly and simple manufacturing process to make the foam, using water as a solvent instead of other harmful solvents.

The work, led by Amir Ameli, assistant professor in the School of Mechanical and Materials Engineering, and Xiao Zhang, associate professor in the Gene and Linda School of Chemical Engineering and Bioengineering, is published in the journal Carbohydrate Polymers.

Read more