Toggle light / dark theme

Powerful radio pulses originating deep in the cosmos can be used to study hidden pools of gas cocooning nearby galaxies, according to a new study appearing in the journal Nature Astronomy.

So-called , or FRBs, are pulses of that typically originate millions to billions of light-years away ( waves are like the light we see with our eyes but have longer wavelengths and frequencies). The first FRB was discovered in 2007, and since then, hundreds more have been found. In 2020, Caltech’s STARE2 instrument (Survey for Transient Astronomical Radio Emission 2) and Canada’s CHIME (Canadian Hydrogen Intensity Mapping Experiment) detected a massive FRB that went off in our own Milky Way galaxy. Those earlier results helped confirm the theory that the energetic events most likely originate from dead, magnetized stars called magnetars.

As more and more FRBs roll in, researchers are now asking how they can be used to study the gas that lies between us and the bursts. In particular, they would like to use the FRBs to probe halos of diffuse gas that surround galaxies. As the radio pulses travel toward Earth, the gas enveloping the galaxies is expected to slow the waves down and disperse the radio frequencies. In the new study, the researchers looked at a sample of 474 distant FRBs detected by CHIME, which has discovered the most FRBs to date, and showed that the subset of two dozen FRBs that passed through galactic halos were indeed slowed down more than non-intersecting FRBs.

It’s effectively a new data set that will fuel the second wave of discoveries about Mars’ surface composition.


But while it was doing that work, it was also gathering lower-resolution mapping strips, about 83,000 of them. Now that CRISM is no longer active, the team is building their map from those strips.

Processing this much data into one cohesive map is a complicated task requiring powerful computing resources. It takes time to optimize the maps and account for environmental conditions and discrepancies between the different images.

“For an individual tile, the optimization process might take just five hours in some exceptional cases, but sometimes it will take over a day,” said CRISM team member Katie Hancock, a software developer at APL who spearheaded the development of the optimization code. In a press release from JH/UAPL, Hancock said that it could take a computer cluster a month to build the map of the entire planet.

We know the brain changes after traumatic injury, and now we have maps from mice showing what that change looks like.

A team of scientists has traced connections between nerve cells throughout the entire brain of mice, showing that distant parts of the brain become disconnected after a head injury.

The stunning visualizations of brain-wide connectivity could help scientists understand how a traumatic brain injury, or TBI, alters cross-talk between different cells and brain regions, first in mice and then in humans.

An Interview with COO Dijam Panigrahi.


“a unified and shared software infrastructure to empower enterprise customers to build and run scalable, high-quality eXtended Reality (XR) – Augmented Reality (AR), Virtual Reality (VR) and Mixed Reality (MR) – applications in public, private, and hybrid clouds.”

What does that all mean?

Simply, GridRaster creates spatial, high-fidelity maps of three-dimensional physical objects. So if you plan to build an automobile or aircraft, use the software to capture an image and create a detailed mesh model overlay that can be viewed using a VR headset. The mesh model can be shared with robots and other devices.

New models that show how the continents were assembled are providing fresh insights into the history of the Earth and will help provide a better understanding of natural hazards like earthquakes and volcanoes.

“We looked at the current knowledge of the configuration of plate boundary zones and the past construction of the continental crust,” said Dr. Derrick Hasterok, Lecturer, Department of Earth Sciences, University of Adelaide who led the team that produced the new models.

The continents were assembled a few pieces at a time, a bit like a jigsaw, but each time the puzzle was finished it was cut up and reorganized to produce a new picture. Our study helps illuminate the various components so geologists can piece together the previous images.

Scientists have created the first reference charts for the human brain, mapping its growth from infancy to 100 years old. Now, they have to grapple with difficult ethical questions about how they should — and perhaps shouldn’t — be used.

The reference charts are visualizations created from aggregating analyses of over 120,000 brain scans to show ranges in brain size, or gray matter volume, for each age. They also track the human brain’s rapid expansion early in life and its gradual shrinking over time. The researchers primarily developed the charts to provide a standardized measurement that other neuroscientists could use for brain imaging research, with the hope that maybe one day it could lead to a tool used in clinics.

“It’s an absolutely spectacular advancement in neuroscience and neuroimaging,” said Judy Illes, professor of neurology and neuroethics at the University of British Columbia.

Shield AI, an artificial intelligence company focusing on drones and other autonomous aircraft, is on a mission to build “the world’s best AI pilot.” To that end, the San Diego startup has raised $90 million in equity and $75 million in debt as part of a Series E fundraising round. The funding values Shield AI at $2.3 billion.

Hivemind employs state-of-the-art algorithms for planning, mapping, and state-estimation to enable drones to execute dynamic flight maneuvers. On aircraft, Hivemind enables full autonomy and is designed to run fully on the edge, disconnected from the cloud, in high-threat GPS and communication-degraded environments.

Scientists are attempting to map the wiring of the nearly 100 billion neurons in the human brain. Are we close to uncovering the mysteries of the mind or are we only at the beginning of a new frontier?

PARTICIPANTS: Deanna Barch, Jeff Lichtman, Nim Tottenham, David Van Essen.
MODERATOR: John Hockenberry.
Original program date: JUNE 4, 2017

WATCH THE TRAILER: https://youtu.be/lX5S_1bXUhw.
WATCH THE LIVE Q&A W/ JEFF LICHTMAN: https://youtu.be/h14hcBrqGSg.

Imagine navigating the globe with a map that only sketched out the continents. That’s pretty much how neuroscientists have been operating for decades. But one of the most ambitious programs in all of neuroscience, the Human Connectome Project, has just yielded a “network map” that is shedding light on the intricate connectivity in the brain. Join leading neuroscientists and psychologists as they explore how the connectome promises to revolutionize treatments for psychiatric and neurological disorders, answer profound questions regarding the electrochemical roots of memory and behavior, and clarify the link between our upbringing and brain development.