Toggle light / dark theme

When Microsoft released Bing Chat, an AI-powered chatbot co-developed with OpenAI, it didn’t take long before users found creative ways to break it. Using carefully tailored inputs, users were able to get it to profess love, threaten harm, defend the Holocaust and invent conspiracy theories. Can AI ever be protected from these malicious prompts?

What set it off is malicious prompt engineering, or when an AI, like Bing Chat, that uses text-based instructions — prompts — to accomplish tasks is tricked by malicious, adversarial prompts (e.g. to perform tasks that weren’t a part of its objective. Bing Chat wasn’t designed with the intention of writing neo-Nazi propaganda. But because it was trained on vast amounts of text from the internet — some of it toxic — it’s susceptible to falling into unfortunate patterns.

Adam Hyland, a Ph.D. student at the University of Washington’s Human Centered Design and Engineering program, compared prompt engineering to an escalation of privilege attack. With escalation of privilege, a hacker is able to access resources — memory, for example — normally restricted to them because an audit didn’t capture all possible exploits.

As chatbot responses begin to proliferate throughout the Internet, they will, in turn, impact future machine learning algorithms that mine the Internet for information, thus perpetuating and amplifying the impact of the current programming biases evident in ChatGPT.

ChatGPT is admittedly a work in progress, but how the issues of censorship and offense ultimately play out will be important. The last thing anyone should want in the future is a medical diagnostic chatbot that refrains from providing a true diagnosis that may cause pain or anxiety to the receiver. Providing information guaranteed not to disturb is a sure way to squash knowledge and progress. It is also a clear example of the fallacy of attempting to input “universal human values” into AI systems, because one can bet that the choice of which values to input will be subjective.

If the future of AI follows the current trend apparent in ChatGPT, a more dangerous, dystopic machine-based future might not be the one portrayed in the Terminator films but, rather, a future populated by AI versions of Fahrenheit 451 firemen.

Want to send your faraway lover a kiss? A Chinese contraption with warm, moving silicon “lips” appears to have just the answer.

The device, advertised as a way to let long-distance couples share “real” physical intimacy, is causing a buzz among Chinese social media users, who have reacted with both intrigue and shock.

Equipped with pressure sensors and actuators, the device is said to be able to mimic a real kiss by replicating the pressure, movement and temperature of a user’s lips.

Sensing a hug from each other via the internet may be a possibility in the near future. A research team led by City University of Hong Kong (CityU) recently developed a wireless, soft e-skin that can both detect and deliver the sense of touch, and form a touch network allowing one-to-multiuser interaction. It offers great potential for enhancing the immersion of distance touch communication.

“With the rapid development of virtual and augmented reality (VR and AR), our visual and auditory senses are not sufficient for us to create an immersive experience. Touch communication could be a revolution for us to interact throughout the metaverse,” said Dr. Yu Xinge, Associate Professor in the Department of Biomedical Engineering (BME) at CityU.

While there are numerous haptic interfaces in the market to simulate in the , they provide only sensing or . The uniqueness of the novel e-skin is that it can perform self-sensing and haptic reproducing functions on the same interface.

A.I. systems like ChatGPT, Bing, and Bard are here to stay

Generative A.I., the kind of software that powers OpenAI’s ChatGPT, Microsoft’s (MSFT) Bing, and Google’s (GOOG, GOOGL) Bard, is all the rage. But the explosion in generative A.I., so named because it generates “new” content based on information it pulls from the web, is facing increasing scrutiny from consumers and experts.

Fears that the software could be used to help students cheat on tests and provide inaccurate, bizarre responses to users’ queries are drawing questions about the platforms’ accuracy and capabilities. And some are wondering if the products have been released too early for their own good.

Physicists at the Max Planck Institute of Quantum Optics have developed the basic technology for a new “quantum modem”. It will allow users to connect to a future quantum internet that is based on the existing fibre optic network infrastructure.

Research

The first quantum revolution brought about semiconductor electronics, the laser and finally the internet. The coming, second quantum revolution promises spy-proof communication, extremely precise quantum sensors and quantum computers for previously unsolvable computing tasks. But this revolution is still in its infancy. A central research object is the interface between local quantum devices and light quanta that enable the remote transmission of highly sensitive quantum information. The Otto-Hahn group “Quantum Networks” at the Max-Planck-Institute of Quantum Optics in Garching is researching such a “quantum modem”. The team has now achieved a first breakthrough in a relatively simple but highly efficient technology that can be integrated into existing fibre optic networks. The work is published this week in “Physical Review X”.

In a new breakthrough, researchers at the University of Copenhagen, in collaboration with Ruhr University Bochum, have solved a problem that has caused quantum researchers headaches for years. The researchers can now control two quantum light sources rather than one. Trivial as it may seem to those uninitiated in quantum, this colossal breakthrough allows researchers to create a phenomenon known as quantum mechanical entanglement. This, in turn, opens new doors for companies and others to exploit the technology commercially.

Going from one to two is a minor feat in most contexts. But in the world of quantum physics, doing so is crucial. For years, researchers around the world have strived to develop stable quantum light sources and achieve the phenomenon known as quantum mechanical entanglement – a phenomenon, with nearly sci-fi-like properties, where two light sources can affect each other instantly and potentially across large geographic distances. Entanglement is the very basis of quantum networks and central to the development of an efficient quantum computer.

Researchers from the Niels Bohr Institute published a new result in the highly esteemed journal Science, in which they succeeded in doing just that. According to Professor Peter Lodahl, one of the researchers behind the result, it is a crucial step in the effort to take the development of quantum technology to the next level and to “quantize” society’s computers, encryption, and the internet.