Toggle light / dark theme

Interactive 3D images that appear to float in the air, above a table that a group of people can stand around without needing any special headsets or glasses: that’s what South Australian company Voxon Photonics has built with its US$10,000 VX1 table.

Fiction has promised us holograms for decades, with one of the most famous examples appearing in 1977’s Star Wars: A New Hope. On board the Millennium Falcon, R2D2 and Chewbacca play some sort of digital board game, interacting with figures built out of light hovering in the air above a table.

Such things have been a long time coming to the real world. VR and AR can both somewhat replicate the experience, but they require headsets. In the best case, these are a bit antisocial, stopping you from looking others in the eye. In the worst case, they completely remove the wearer from the real world to immerse them in virtual space.

Shrinking Down

In a bid to sell more than “several dozen” models, the company is now working on a more accessible, miniature version that records and transmits holograms without taking up the entire height of a room. And, company founder David Nussbaum tells TechCrunch, it comes with new subscription features.

“The minis will be bundled with content like Peloton and Mirror bundled with very specific types of content,” Nussbaum said. “We are in conversations with a number of extremely well-known content creators where we would bundle a portal but will also have dedicated and exclusive content.”

Intensity shot noise in digital holograms distorts the quality of the phase images after phase retrieval, limiting the usefulness of quantitative phase microscopy (QPM) systems in long term live cell imaging. In this paper, we devise a hologram-to-hologram neural network, Holo-UNet, that restores high quality digital holograms under high shot noise conditions (sub-mW/cm2 intensities) at high acquisition rates (sub-milliseconds). In comparison to current phase recovery methods, Holo-UNet denoises the recorded hologram, and so prevents shot noise from propagating through the phase retrieval step that in turn adversely affects phase and intensity images. Holo-UNet was tested on 2 independent QPM systems without any adjustment to the hardware setting. In both cases, Holo-UNet outperformed existing phase recovery and block-matching techniques by ∼ 1.8 folds in phase fidelity as measured by SSIM. Holo-UNet is immediately applicable to a wide range of other high-speed interferometric phase imaging techniques. The network paves the way towards the expansion of high-speed low light QPM biological imaging with minimal dependence on hardware constraints.

This video shows how holographic storage works, using green light to write data as a persistent hologram inside an optical crystal. The data can then be read…How does holographic storage work?


See a home you can live in, make a living out, and grow most of your food in too, the ultimate bug-in or bug-out location — on Mars — here on Earth, or just about anywhere! That is why I call it my Universal Habitat. This is a very low ecological footprint home that can be beautiful, almost no energy cost to maintain, could be built affordably, and be resistant to many natural and man-made disasters such as tornadoes, fire, radiation, and worse. This is the ultimate self-sufficient bunker/fortress.

You can support Galactic Gregs by supporting the sister channel Green Gregs by clicking the links below: