Toggle light / dark theme

A UCSF study reveals that higher inflammation levels in young adults are associated with poorer cognitive performance in midlife, underscoring the importance of lifestyle choices in reducing inflammation and preventing cognitive decline.

Higher levels of inflammation in young adults, associated with factors like obesity, physical inactivity, chronic illness, stress, and smoking, are linked to decreased cognitive function in midlife, according to a new study from UC San Francisco.

Researchers previously linked higher inflammation in older adults to dementia, but this is one of the first studies to connect inflammation in early adulthood with lower cognitive abilities in midlife.

Microwave technology has dramatically progressed, marked by the arrival of the 5G era, owing to the advantages of electromagnetic waves in long-distance, wireless, and high-speed transmissions. However, electromagnetic wave pollution problems such as electromagnetic wave interference and electromagnetic wave radiation are becoming increasingly serious.

Electromagnetic wave pollution not only affects the normal operation of electronic equipment, greatly threatens the information security of the scientific community, but also endangers human health and is a possible cause of cancer and sensitized diseases.

SiOC precursor ceramics have great application potential in electromagnetic protection because of their advantages such as lightweight, high-temperature resistance, and molecular designability. The main challenge of polymer-derived ceramic-based composites for electromagnetic wave absorption is the single loss mechanism, resulting in inferior electromagnetic wave attenuation ability.

A city in Southern California has become the first in the nation to replace its police patrol cars with electric vehicles, officials announced Monday, unveiling a fleet of 20 new Teslas.

South Pasadena on the edge of Los Angeles will replace its gas-guzzling police cruisers with the Teslas to help protect public health and fight climate change through reducing emissions. The Teslas will use new electric vehicle chargers installed at City Hall, officials said.

(CNN) — Regular aspirin use may keep the oncologist away, at least when it comes to colorectal cancer, according to a new study, and people with unhealthy lifestyles seemed to see the greatest benefit.

Colorectal cancer is the second most common cause of cancer death worldwide, predicted to cause more than 52,500 deaths in the US alone in 2023. About 153,020 people in the US were diagnosed with the condition in 2023, and it’s become much more prevalent among people under 55, with numbers more than doubling in this group from a decade ago, studies show.

The causes of colorectal cancer can be genetic, but certain lifestyle factors also seem to raise risk, including eating an unhealthy diet, not getting enough exercise, drinking alcohol, smoking and having a high body mass index.

Future studies can now be designed to understand the discovery in greater depth and use it to develop treatments. “The essential next step is to investigate the efficacy of IL-22BP inhibitors in animal models and possibly in clinical trials to treat severe intestinal infections,” Fachi said. Another possibility will be to explore how different types and quantities of food fiber affect short-chain fatty acid production. “The composition of gut microbiota in the absence of IL-22BP can provide valuable information,” he added.

Gut microbiota modulation may benefit other intestinal inflammatory conditions, such as Crohn’s disease and ulcerative colitis, as well as infections caused by other pathogens.

“Finding out how IL-22 interacts with other molecules and immune system cells in the absence of IL-22BP will help us better understand its function in intestinal immunity. Future studies could transform our understanding of the role of these proteins in intestinal health and lead to the development of novel therapeutic strategies to prevent and treat intestinal infections,” Vinolo said.

In a recent study published in Neuron, researchers discovered that microglia, the brain’s immune cells, use tunneling nanotubes…


Scheiblich et al. uncover a novel mechanism by which microglia use tunneling nanotubes to connect with α-syn-or tau-burdened neurons, enabling transfer of these proteins to microglia for clearance. Microglia donate mitochondria to restore neuronal health, shedding light on new therapeutic strategies for neurodegenerative diseases.

Worm-Derived Therapeutics For Debilitating Diseases — Dr. Andrea Choe, MD, Ph.D. — CEO, Holoclara Inc


Dr. Andrea Choe, MD, Ph.D. is the CEO and Co-Founder of Holoclara (https://www.holoclara.com/), a company focused on creating novel, safe, orally bioavailable worm-derived therapeutics with a focus on indications such as allergies and autoimmune disorders.

While pursuing her doctorate at the California Institute of Technology, Dr. Choe uncovered a unique pheromone language shared by roundworms that may have evolved over hundreds of millions of years.

Dr. Choe’s research, including her discovery of novel molecules derived from worms that blocked formation of disease in animal models of allergic and autoimmune disease, has led to advances in the fields of evolutionary biology and extreme biology. Her work has become the foundation of Holoclara’s technology and mission to pioneer a new class of therapeutics that can provide relief for millions of people living with chronic and debilitating diseases.

Dr. Choe is a winner of the Emerging Women Founders in Biotech Award. She received her MD at USC Keck School of Medicine and her PhD at Caltech.

The field of organoid intelligence is recognized as groundbreaking. In this field, scientists utilize human brain cells to enhance computer functionality. They cultivate tissues in laboratories that mimic real organs, particularly the brain. These brain organoids can perform brain-like functions and are being developed by Dr. Thomas Hartung and his team at the Johns Hopkins Bloomberg School of Public Health.

For nearly two decades, scientists have used organoids to conduct experiments without harming humans or animals. Hartung, who has been cultivating brain organoids from human skin samples since 2012, aims to integrate these organoids into computing. This approach promises more energy-efficient computing than current supercomputers and could revolutionize drug testing, improve our understanding of the human brain, and push the boundaries of computing technology.

The conducted research highlights the potential of biocomputing to surpass the limitations of traditional computing and AI. Despite AI’s advancements, it still falls short of replicating the human brain’s capabilities, such as energy efficiency, learning, and complex decision-making. The human brain’s capacity for information storage and energy efficiency remains unparalleled by modern computers. Hartung’s work with brain organoids, inspired by Nobel Prize-winning stem cell research, aims to replicate cognitive functions in the lab. This research could open new avenues for understanding the human brain by allowing ethical experimentation. The team envisions scaling up the size of brain organoids and developing communication tools for input and output, enabling more complex tasks.