Toggle light / dark theme

When engineers at the University of California, Berkeley, say they are going to make you sweat, it is all in the name of science. Specifically, it is for a flexible sensor system that can measure metabolites and electrolytes in sweat, calibrate the data based upon skin temperature and sync the results in real time to a smartphone.

While health monitors have exploded onto the consumer electronics scene over the past decade, researchers say this device, reported in the Jan. 28 issue of the journal Nature (“Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis”), is the first fully integrated electronic system that can provide continuous, non-invasive monitoring of multiple biochemicals in sweat.

wristband sweat sensor

The new sensor developed at UC Berkeley can be made into “smart” wristbands or headbands that provide continuous, real-time analysis of the chemicals in sweat.

Read more

Virtual Healthcare & IMSHealth is a major player in this service offering. Healthcare and clinic in your own home.


The University of Southern California Center for Body Computing has teamed with 8 partners to launch a Virtual Care Clinic. The idea with VCC is to create an integrated approach to the use of mobile apps, “virtual” doctors, artificial intelligence, data collection and analysis, as well as diagnostics and wearable sensors to create truly on-demand healthcare.

The partners involved in this effort are peer-reviewed clinical trial database startup Doctor Evidence, drug data resource IMS Health ($IMS), consumer design firm Karten Design, HIPAA-compliant cloud platform Medable, video creator Planet Grande, sensor-enabled pill startup Proteus Digital Health and vision player VSP Global.

VSP’s next-gen sensor-embedded eyewear prototype, dubbed Project Genesis, will be refined and tested at the VCC in consultation with USC CBC, which is the digital health innovation accelerator at Keck School of Medicine. The VCC will also involve USC’s Institute of Creative Technologies (ICT).

Cancer is a mysterious disease for many reasons. Chief among the unknowns are how and why tumors form.

Two University of Iowa studies offer key insights by recording in real time, and in 3-D, the movements of cancerous human breast tissue cells. It’s believed to be the first time cancer cells’ motion and accretion into tumors has been continuously tracked. (See accompanying videos.)

The team discovered that actively recruit healthy cells into tumors by extending a cable of sorts to grab their neighbors—both cancerous and healthy—and reel them in. Moreover, the Iowa researchers report that as little as five percent of cancerous cells are needed to form the tumors, a ratio that heretofore had been unknown.

Read more

The things we need to know for the 2016 robotic experience — robot clusters, manufacturing & logistics, food & healthcare, A3 Mexico Coming Soon and robotics integration.


Bold predictions for Collaboration, Connectivity and Convergence rang in 2015. One industry insider even called them prescient. Looking back a year later, we see the five-year forecast materializing faster than expected.

Industrial Internet of Things (IIOT) is more than a buzzword. With drones taking to the skies and autonomous robots navigating our warehouses, local eateries, hotels, hospitals, and stores, and soon our roadways – the differences between industrial, collaborative, and service robots continue to blur. No longer are robots reserved for multinational conglomerates or the rich eccentric with a sweet tooth for high-tech toys. SMEs and your average homeowner can now join the party. Sensors, software, and hardware are getting smarter and cheaper. We’re democratizing robotics for the masses.

It’s taken longer than some had hoped. But we’re approaching the tipping point for many automation technologies. We’re envisioning a world where robots will help the elderly and infirm with everyday tasks, so they can live independently longer. We’re moving closer to Asimov’s robots and to the “mobile, sensate robot” Engelberger anticipated. It’s the paradigm shift foretold by visionaries past and present.

Cannot wait for the new AR contacts.


NEW YORK, Jan. 21, 2016 /PRNewswire/ — This new IDTechEx report is focused on how the market for smart glasses and contact lenses is going to evolve in the next decade, based on the exciting research and developments efforts of recent years along with the high visibility some projects and collaborations have enjoyed. The amount of visibility this space is experiencing is exciting developers of a range of allied technologies into fast-tracking/focusing their efforts, as well as creating devices and components designed specifically to serve this emerging industry.

Some of the newest devices that have ignited significant interest in smart eyewear are going above and beyond the conventional definition of a smart object; they are in effect, portable, wearable computers with a host of functionalities, specially designed apps etc. that add new ways for the wearer to interact with the world along with smartphone capabilities, health tracking options and many other features. The features of some of the more advanced devices have been based on and have sparked worldwide innovation efforts aiming to create an ecosystem of components that will enable what is bound to be a revolution in form factor for wearables.

User interface is probably one of the most significant features in this revolution. As interfacing with computers undergoes a constant evolution, allowing for wider adoption as interaction becomes more “natural”, smartglasses are bringing about the next big step in this ever-changing space. From keyboards to touchscreens to cameras & positioning/location/infrared sensors, a new wave of innovation is making interfacing with computers gesture-based, and nowhere else is that more obvious than in eye-worn computing.

Interesting; no more rotten fruit. Researchers may actually found a new way to preserve perishable foods. Can you imagine the cost savings to consumers, plus being able to supply more people with fresh fruits and vegetables. World Bank and Health Organizations should be interested in this as well.

It does make me wonder how the research on life extension, etc. can learn from the findings of this experiment.


Researchers have managed to “pluck” a single photon – one particle of light – out of a pulse of light.”

Read more

BMI is an area that will only explode when the first set of successful tests are presented to the public. I suggest investors, technologists, and researchers keep an eye on this one because it’s own impact to the world is truly inmense especially when you realize BMI changes everything in who we view how we process and connect with others, business, our homes, public services, transportation, healthcare, etc.


Implantable brain-machine interfaces (BMI) that will allow their users to control computers with thoughts alone will soon going to be a reality. DARPA has announced its plans to make such wetware. The interface would not be more than two nickels placed one on the other.

These implantable chips as per the DARPA will ‘open the channel between the human brain and modern electronics’. Though DARPA researchers have earlier also made few attempts to come up with a brain-machine interface, previous versions were having limited working.

The wetware is being developed a part of the Neural Engineering System Design (NESD) program. The device would translate the chemical signals in neurons into digital code. Phillip Alvelda, the NESD program manager, said, “Today’s best brain-computer interface systems are like two supercomputers trying to talk to each other using an old 300-baud modem. Imagine what will become possible when we upgrade our tools to really open the channel between the human brain and modern electronics”.

Welcome to a new age of AI Healthcare
Although we’re in the early release/ deployment stages of the AI doctor experience and compound that with a 10 year evolution of technology and health science being intertwined together as one/ Singularity; could we see a day soon when technology and engineering graduates having their own education include medical school? Definitely could be as we move more into a singularity future and as the many of the routine patient services evolve to AI and Robotics.

Granted, companies hire today doctors and nurses, etc. to consult their engineers and techies; however, Singularity and as we evolve to it, will require engineers and techies to have their own level of a in-depth medical background/ knowledge due to it’s complexity. Now, imagine the change and transformation that will be required across our educational system as well in order for us to be prepared for this new future.


London-based digital healthcare startup, Babylon is an artificially intelligent ‘doctor’ that aims to prevent illnesses before they occur. To do this, the program tracks your daily habits, diagnosis illness based on symptoms and integrating data about heart rate, diet and medical records.

Currently, this AI doctor is available in the form of an app used by 250,000 people in the UK, who each pay £4.99 ($7.19) to get 7-day-a-week access to a pool of human doctors over video chat.

Stanford used modified messenger RNA to extend the telomeres so the whole process if it translates effectively into humans — and the evidence is suggesting it will — would be pretty straightforward especially when you consider the degree of extension which is 1000 nucleotides and the fact that the telomerase which lengthens the telomeres is only active in the body for 48 hours which means there is no significant risk of cancer due to the limited time during which proliferation of the cells could take place.


It’s true that Lobsters defy the normal aging process which in humans increases the risk of heart disease, stroke, cancer, Alzheimer’s and diabetes in humans but not only that they actually become stronger and bigger with age each time they shed their shell whereas humans and other mammals are completely the opposite suffering muscle loss, stiffness and elevated risk of fractures etc. Lobsters just keep growing and can grow to a colossal size over the years there is information on a 95 year old 23 pounder (10.5kg) here http://www.cbsnews.com/news/95-year-old-lobster-featured-at-…estaurant/

Normally a lobster dies because it is eaten by a predator I.e us!, suffers an injury or gets a disease. we know the reason they remain fit and strong and it lies in their use of telomerase to protect their DNA and prevent their telomeres shortening and as a result protecting their cells from dying they also have a vast supply of stem cells which can turn into any into any type body of tissue and this will be one of our main tools for biomedical repairs in the future along with telomere lengthening as explained below because if we can extend our telomeres we will also hold one of the keys to life extension.

Based on current research it is technically possible and highly probable work on telomere lengthening at Stanford university will translate into humans giving us the health benefits currently confined to lobsters and the hydra. The primary concern with the lengthening of telomeres used to lie in the theoretically elevated risk of cancer but this problem does not apply based on the current research which you can see on the Stanford University website here https://med.stanford.edu/news/all-news/2015/01/telomere-exte…cells.html as a researcher in aging I consider this research and some supporting and complementary research which has taken place at Harvard coupled with a additional research relating to a compounds that is related to Rapamycin tends to indicate that we are finally making significant progress in addressing the diseases of aging. Interestingly shortening of telomeres was until recently perceived by many as being a result of aging and not causal but the research at Stanford clearly repudiates this and suggests that Dr Bill Andrews the leading researcher into telomeres was correct all the way along.

Read more