Toggle light / dark theme

A simple cold virus could wipe out tumors in a form of bladder cancer, a small new study suggests.

Though the idea of using viruses to fight cancer isn’t new, this is the first time a cold virus effectively treated an early-stage form of bladder cancer. In one patient, it eliminated a cancerous tumor, the group reported July 4 in the journal Clinical Cancer Research.

A group of researchers conducted an early-stage clinical trial in which they infected 15 bladder cancer patients with coxsackievirus A21, which is one of the viruses that cause the common cold. Coxsackievirus is not a genetically modified virus; it’s “something that occurs in nature,” said senior author Hardev Pandha, a professor of medical oncology at the University of Surrey in England. [Exercise May Reduce the Risk of These 13 Cancers].

A new study has discovered that the guts of elite athletes contain a particular type of bacteria that boosts exercise capacity. The bacteria are members of the genus Veillonella and are not present in the gut microbiomes of sedentary people.

The microbiome

The microbiome is an ever-changing ecosystem in the gut populated by a vast array of types of archaea, eukarya, viruses, and bacteria. Four microbial phyla, Firmicutes, Bacteroides, Proteobacteria, and Actinobacteria, make up 98% of the intestinal microbiome.

BURLINGTON, Vt. (AP) The Vermont Department of Health is reminding residents to avoid contact with toxic blue-green algae in Vermont waters.

It says warm weather creates ideal conditions for cyanobacteria to grow. Blooms can form on the surface and wash up on shorelines.

They’ve already been spotted in Mallets and Missisquoi bays in Lake Champlain. Officials say swimming or wading in water with cyanobacteria may cause skin rashes, diarrhea, a sore throat, stomach problems, or more serious health concerns. It says dogs are especially vulnerable to the toxic effects.

How do the communities of microbes living in our gastrointestinal systems affect our health? Carnegie’s Will Ludington was part of a team that helped answer this question.

For nearly a century, have probed how genes encode an individual’s chances for success—or fitness—in a specific environment.

In order to reveal a potential evolutionary trajectory biologists measure the interactions between genes to see which combinations are most fit. An organism that is evolving should take the most fit path. This concept is called a fitness landscape, and various mathematical techniques have been developed to describe it.