Toggle light / dark theme

Faculty engaged in microbiome research across campus have previously shown that our microbiome plays a key role in defining human health. For example, microbial dysfunction in the infant gut – characterized by the enrichment of particular microbial genes and their products – drive immune dysfunction and can be used to predict the development of allergy and asthma in childhood. Perturbed microbial ecosystems across the human body have been linked to autoimmune disease, metabolic syndromes such as obesity and diabetes, skin diseases, and even multiple sclerosis. Gut microbes can even contribute to metabolizing drugs and influence how much enters the circulation.

Leveraging this expertise and collaborations with UCSF Benioff Children’s Hospitals in Oakland and San Francisco and institutions nationwide, the UCSF Benioff Center for Microbiome Medicine aims to develop a holistic understanding of our earliest interactions with microbes in utero, through birth, and in early life. These efforts aim to find ways of predicting and preventing not only asthma and allergy, but other childhood diseases – including dermatological, gastrointestinal, respiratory and neurological disorders.

“At the same time that we are developing therapeutic strategies to restore microbial ecosystems once they have been damaged,” Lynch said. “We also need to find ways to intervene in at-risk populations in very early life to prevent chronic diseases before they start.”

Scientists have developed an automated tool for mapping the movement of particles inside cells that may accelerate research in many fields, a new study in eLife reports.

The movements of tiny molecules, proteins and cellular components throughout the body play an important role in health and disease. For example, they contribute to brain development and the progression of some diseases. The new tool, built with cutting-edge machine learning technology, will make tracking these movements faster, easier and less prone to bias.

Currently, scientists may use images called kymographs, which represent the movement of in time and space, for their analyses of particle movements. These kymographs are extracted from time-lapse videos of particle movements recorded using microscopes. The analysis needs to be done manually, which is both slow and vulnerable to unconscious biases of the researcher.

Amid unrelenting chaos and violence, scientists and doctors in the Democratic Republic of Congo have been running a clinical trial of new drugs to try to combat a year-long Ebola outbreak. On Monday, the trial’s cosponsors at the World Health Organization and the National Institutes of Health announced that two of the experimental treatments appear to dramatically boost survival rates.

While an experimental vaccine previously had been shown to shield people from catching Ebola, the news marks a first for people who already have been infected. “From now on, we will no longer say that Ebola is incurable,” said Jean-Jacques Muyembe, director general of the Institut National de Recherche Biomedicale in the DRC, which has overseen the trial’s operations on the ground.

Starting last November, patients in four treatment centers in the country’s east, where the outbreak is at its worst, were randomly assigned to receive one of four investigational therapies—either an antiviral drug called remdesivir or one of three drugs that use monoclonal antibodies. Scientists concocted these big, Y-shaped proteins to recognize the specific shapes of invading bacteria and viruses and then recruit immune cells to attack those pathogens. One of these, a drug called ZMapp, is currently considered the standard of care during Ebola outbreaks. It had been tested and used during the devastating Ebola epidemic in West Africa in 2014, and the goal was to see if those other drugs could outperform it. But preliminary data from the first 681 patients (out of a planned 725) showed such strong results that the trial has now been stopped.

A widespread outbreak of Legionnaires’ disease has killed one person and sickened possibly dozens of others who were all guests at the Sheraton Atlanta Hotel. The hotel evacuated all its guests on July 15 and remains closed as of press time.

Public health officials say a dozen guests had tested positive for Legionnaires’, a bacteria that can cause a severe form of pneumonia. But according to the attorney filing a lawsuit Monday, hundreds more may have been exposed.

By the time guests were evacuated in mid-July, 49-year-old Cameo Garrett was already dead. An autopsy showed she had coronary issues and Legionnaires’ disease. Garrett went to a conference at the Sheraton a week before she died – just like Germany Greer who said he became so sick at one point he didn’t even know his own name.

This article appears in Weekly Health Page July 31.

Researchers found that more than four out of five Ohio women who had been physically abused by their partners had suffered a head injury. A study that found domestic violence survivors had sustained staggering rates of head trauma and violent choking incidents suggests that many are left with ongoing health problems from “invisible injuries” to the brain.

But the effects of such injuries often go unrecognized by advocates, health care providers, law enforcement — even the victims themselves, researchers said.