Toggle light / dark theme

If you’ve been to your local beach, you may have noticed the wind tossing around litter such as an empty potato chip bag or a plastic straw. These plastics often make their way into the ocean, affecting not only marine life and the environment but also threatening food safety and human health.

Eventually, many of these plastics break down into microscopic sizes, making it hard for scientists to quantify and measure them. Researchers call these incredibly small fragments nanoplastics and microplastics because they are not visible to the naked eye. Now, in a multiorganizational effort led by the National Institute of Standards and Technology (NIST) and the European Commission’s Joint Research Centre (JRC), researchers are turning to a lower part of the food chain to solve this problem.

The researchers have developed a novel method that uses a filter-feeding marine species to collect these tiny plastics from ocean water. The team published its findings as a proof-of-principle study in the scientific journal Microplastics and Nanoplastics.

Scientists said the findings indicated that the virus likely recently jumped from animals to humans, but stressed that additional studies are necessary.


Scientists have reportedly discovered a new kind of coronavirus that is believed to have originated in dogs – in what may be the eighth unique form of the bug known to cause disease in humans.

Researchers in a study published in the Clinical Infectious Diseases journal said their findings from patients hospitalized with pneumonia in 2017–2018 underscored the public health threat of animal coronaviruses, Reuters reported.

They said they had tested nasal swab samples taken from 301 pneumonia patients at a hospital in the east Malaysian state of Sarawak.

Pediatrician, Medical Innovator, Educator — Dr. Jamie Wells, MD, FAAP — Director, Research Science Institute (RSI), Center for Excellence in Education, Massachusetts Institute of Technology (MIT) — Professor, Drexel University School of Biomedical Engineering, Science and Health Systems.


Dr. Jamie L. Wells, MD, FAAP, is an Adjunct Professor at Drexel University’s School of Biomedical Engineering, Science and Health Systems, where she has been involved in helping to spearhead the nation’s first-degree program focused on pediatric engineering, innovation, and medical advancement.

Dr. Wells is an award-winning Board-certified pediatrician with many years of experience caring for patients. With her BA with Honors from Yale, and her MD from Jefferson Medical College, Philadelphia, PA, she has served as a Clinical Instructor/Attending at NYU Langone, Mt. Sinai-Beth Israel and St. Vincent’s Medical Centers in Manhattan.

Dr. Wells also serves as Director of the Research Science Institute (RSI), at Center for Excellence in Education (CEE), a non-profit, 501©(3) organization, collaboratively sponsored with MIT bring together top U.S. and international high school students for an intensive, six-week summer program that provides students with the opportunity to conduct original, cutting-edge research.

Dr. Wells is on the leadership council of the Wistar Institute (the USA’s first independent biomedical research facility and certified cancer center), Ambassador of the Healthcare Global Blockchain Business Council, was a grant reviewer for the Susan G. Komen Community Grants Program, judged both the local, district and world robotics championships for Dean Kamen’s F.I.R.S.T. (For Inspiration & Recognition of Science & Technology) nonprofit, as well as the Miss America’s Outstanding Teen scholarship competition (for which she is now a member of its Board of Directors), and is the Chair of the Yale Alumni Health Network (YAHN).

Tune in to find out about how we’re furthering our mission to organize the world’s information and make it universally accessible and useful.

0:00 Opening Film.
1:26 Introduction, Sundar Pichai.
7:07 Workspace.
34:54 Safer With Google.
43:00 Helpful Information.
1:13:30 Design + Android.
1:41:29 Health.
1:50:43 Sustainability.

To watch this keynote interpreted in American Sign Language (ASL), please click here:

Tweet with us on Twitter: https://twitter.com/google.
Follow us on Instagram: https://www.instagram.com/google.
Join us on Facebook: https://www.facebook.com/Google

They are linked to cancer, birth defects, liver disease, thyroid disease, plummeting sperm counts and a range of other serious health problems.

The peer-reviewed study, published on Thursday in the Environmental Science and Technology journal, found PFAS at levels in milk ranging from 50 parts per trillion (ppt) to more than 1850ppt.


Toxic chemicals known as PFAS found in all 50 samples tested at levels nearly 2000 times what is considered safe in drinking water.

Tom Perkins

“Gene editing offers unique opportunities to make food production more sustainable and to further improve the quality, but also the safety, of food. With the help of these new molecular tools, more robust plants can be developed that deliver high yields for high-quality nutrition, even with less fertiliser,” says co-author Stephan Clemens, Professor of Plant Physiology at the University of Bayreuth and founding Dean of the new Faculty of Life Sciences: Food, Nutrition & Health on the Kulmbach campus.


For more sustainability on a global level, EU legislation should be changed to allow the use of gene editing in organic farming. This is what an international research team involving the Universities of Bayreuth and Göttingen demands in a paper published in the journal “Trends in Plant Science”.

In May 2020, the EU Commission presented its “Farm-to-Fork” strategy, which is part of the “European Green Deal”. The aim is to make European agriculture and its food system more sustainable. In particular, the proportion of organic farming in the EU’s total agricultural land is to be increased to 25 percent by 2030. However, if current EU legislation remains in place, this increase will by no means guarantee more sustainability, as the current study by scientists from Bayreuth, Göttingen, Düsseldorf, Heidelberg, Wageningen, Alnarp, and Berkeley shows.

Can We Immunize The World Against Future Pandemics? Dr Jonna Mazet, DVM, MPVM, PhD, UC Davis School of Veterinary Medicine — Global Virome Project.


Dr. Jonna Mazet, DVM, MPVM, PhD, is a Professor of Epidemiology and Disease Ecology at the UC Davis School of Veterinary Medicine, Founding Executive Director of the UC Davis One Health Institute, and Vice Provost For Grand Challenges At UC Davis.

Additionally, Dr. Mazet in on the Steering Committee of the Global Virome Project, Principal Investigator of the PREDICT project, Chair, National Academies’ One Health Action Collaborative, and Co-Vice Chair, UC Global Health Institute Board of Directors.

Dr. Mazet’s work focuses on global health problem solving for emerging infectious diseases and conservation challenges. She is active in international One Health education, service, and research programs, most notably in relation to pathogen emergence; disease transmission among wildlife, domestic animals, and people; and the ecological drivers of novel disease dynamics.

Currently, Dr. Mazet is the Co-Director of the US Agency for International Development’s One Health Workforce – Next Generation, an $85 million educational strengthening project to empower professionals in Central/East Africa and Southeast Asia to address complex and emerging health threats, including antimicrobial resistance and zoonotic diseases.

The UK’s decision to delay second doses of coronavirus vaccines has received fresh support from research on the over-80s which found that giving the Pfizer/BioNTech booster after 12 weeks rather than three produced a much stronger antibody response.

A study led by the University of Birmingham in collaboration with Public Health England found that antibodies against the virus were three-and-a-half times higher in those who had the second shot after 12 weeks compared with those who had it after a three-week interval.

History tells us that games are an inseparable facet of humanity, and mainly for good reasons. Advocates of video games laud their pros: they help develop problem-solving skills, socialize, relieve stress, and exercise the mind and body—all at the same time! However, games also have a dark side: the potential for addiction. The explosive growth of the video game industry has spawned all sorts of games targeting different groups of people. This includes digital adaptations of popular board games like chess, but also extends to gambling-type games like online casinos and betting on horse races. While virtually all engaging forms of entertainment lend themselves to addictive behavior under specific circumstances, some video games are more commonly associated with addiction than others. But what exactly makes these games so potentially addictive?

This is a difficult question to answer because it deals directly with aspects of the human , and the inner workings of the mind are mostly a mystery. However, there may be a way to answer it by leveraging what we do know about the physical world and its laws. At the Japan Advanced Institute of Science and Technology (JAIST), Japan, Professor Hiroyuki Iida and colleagues have been pioneering a methodology called “motion in mind” that could help us understand what draws us towards games and makes us want to keep reaching for the console.

Their approach is centered around modeling the underlying mechanisms that operate in the mind when playing games through an analogy with actual physical models of motion. For example, the concepts of potential energy, forces, and momentum from are considered to be analogous to objective and/or subjective -related aspects, including pacing of the game, randomness, and fairness. In their latest study published in IEEE Access, Professor Iida and Assistant Professor Mohd Nor Akmal Khalid, also from JAIST, linked their “motion in mind” model with the concepts of engagement and addiction in various types of games from the perceived experience of the player and their behaviors.