Toggle light / dark theme

A Promising Therapy for Hard-To-Treat Depression: Deep Brain Stimulation

A study finds that deep brain stimulation to areas of the brain associated with reward and motivation could be used as a potential treatment for depression.

According to researchers at the University of Texas Health Science Center at Houston, deep brain stimulation (DBS) to the superolateral branch of the medial forebrain bundle (MFB), which is linked to motivation and reward, revealed metabolic brain changes over a 12-month period following DBS implantation. This makes it a potent potential therapy for treatment-resistant depression.

The study’s findings, which included 10 patients, were published in the journal Molecular Psychiatry.

The interaction between energy and matter, nothing less than a quantum

Some of us, when we hear the word quantum (plural quanta, from the German word Quanten), might think of health supplements, a sports car, or even the television show Quantum Leap. More recently, in Marvel Studios movies such as Ant-Man, Doctor Strange, and Avengers: Endgame, “the quantum realm” is presented where time flows differently from our ordinary reality and the Avengers may use the subatomic world “to go back in time”, a world that “is smaller than a single atom” (Woodward, 2019, para.20)

We might have also seen or known the meaning of words such as quantum mechanics, quantum computing, and quantum entanglement, but what is a quantum and how does it relate to our ordinary realm?

A quantum is a word that refers to “how much”; it is a specific amount. For example, if the speed of your car happens to be quantized in increments of 10 mph, then as you accelerate your car from 10 mph, the speed will jump to 20 mph, without passing through any speed between 10 mph and 20 mph. A speed of 12 mph or 19 mph is excluded because the speed of your car can only exist in those increments of 10 mph.

US health officials brace for mosquito-borne virus that can cause paralysis and death as temperatures rise

Basically the United States has alerts for the west Nile as it seems to be spreading across many states.


As temperatures warm, US health officials are braced for rising rates of West Nile virus, a disease transmitted by mosquitoes that can cause meningitis, paralysis, and death.

Oklahoma reported its first West Nile death of the year on Thursday, in a resident who had been hospitalized with the illness.

In 2021, eight people got sick and one died of West Nile virus in Oklahoma, according to the US Centers for Disease Control and Prevention. The virus often infects people without causing symptoms, but can be deadly if it reaches the brain.

Revolutionizing Infrared Sensing Could Transform Imaging Applications

The infrared (IR) spectrum is a vast information landscape that modern IR detectors tap into for diverse applications such as night vision, biochemical spectroscopy, microelectronics design, and climate science. But modern sensors used in these practical areas lack spectral selectivity and must filter out noise, limiting their performance. Advanced IR sensors can achieve ultrasensitive, single-photon level detection, but these sensors must be cryogenically cooled to 4 K (−269 C) and require large, bulky power sources making them too expensive and impractical for everyday Department of Defense or commercial use.

DARPA’s Optomechanical Thermal Imaging (OpTIm) program aims to develop novel, compact, and room-temperature IR sensors with quantum-level performance – bridging the performance gap between limited capability uncooled thermal detectors and high-performance cryogenically cooled photodetectors.

“If researchers can meet the program’s metrics, we will enable IR detection with orders-of-magnitude improvements in sensitivity, spectral control, and response time over current room-temperature IR devices,” said Mukund Vengalattore, OpTIm program manager in DARPA’s Defense Sciences Office. “Achieving quantum-level sensitivity in room-temperature, compact IR sensors would transform battlefield surveillance, night vision, and terrestrial and space imaging. It would also enable a host of commercial applications including infrared spectroscopy for non-invasive cancer diagnosis, highly accurate and immediate pathogen detection from a person’s breath or in the air, and pre-disease detection of threats to agriculture and foliage health.”

Scientists Use ‘Sleep Age’ to Infer Long-Term Health

Summary: Sleep age, a projected age that correlates to a person’s sleep health, may be a predictor of overall health and mortality risk.

Source: Stanford.

Numbers tell a story. From your credit score to your age, metrics predict a variety of outcomes, whether it’s your likelihood to get a loan or your risk for heart disease. Now, Stanford Medicine researchers have described another telling metric—one that can predict mortality. It’s called sleep age.

Machine learning algorithm predicts how to get the most out of electric vehicle batteries

Researchers have developed a machine learning algorithm that could help reduce charging times and prolong battery life in electric vehicles by predicting how different driving patterns affect battery performance, improving safety and reliability.

The researchers, from the University of Cambridge, say their algorithm could help drivers, manufacturers and businesses get the most out of the batteries that power by suggesting routes and driving patterns that minimize battery degradation and charging times.

The team developed a non-invasive way to probe batteries and get a holistic view of battery health. These results were then fed into a machine learning algorithm that can predict how different driving patterns will affect the future health of the battery.

The 45-year-old probe is aging gracefully

Since May, the engineering team with NASA’s Voyager 1 spacecraft had been trying to solve a mystery. The 45-year-old spacecraft seemed to be in excellent condition, receiving and executing commands from Earth, along with gathering and returning science data — but the probe’s attitude articulation and control system (AACS) was sending garbled information about its health and activities to mission controllers.

The AACS controls the spacecraft’s orientation and keeps Voyager 1’s high-gain antenna pointed precisely at Earth, enabling it to send data home. Though all signs suggested that the AACS was still working, the telemetry data was invalid.


While the spacecraft continues to return science data and otherwise operate as normal, the mission team is searching for the source of a system data issue.

The engineering team with NASA’s Voyager 1 spacecraft is trying to solve a mystery: The interstellar explorer is operating normally, receiving and executing commands from Earth, along with gathering and returning science data. But readouts from the probe’s attitude articulation and control system (AACS) don’t reflect what’s actually happening onboard.

The AACS controls the 45-year-old spacecraft’s orientation. Among other tasks, it keeps Voyager 1’s high-gain antenna pointed precisely at Earth, enabling it to send data home. All signs suggest the AACS is still working, but the telemetry data it’s returning is invalid. For instance, the data may appear to be randomly generated, or does not reflect any possible state the AACS could be in.

Dr Robert A. Montgomery, MD, DPhil, FACS — NYU Langone — Managing Complex Transplant Cases Globally

Managing Complex Transplant (and Xenotransplant) Cases Globally — Dr Robert A Montgomery, MD, DPhil, FACS, Director, NYU Langone Health


Dr. Robert A. Montgomery, MD, DPhil, FACS, (https://nyulangone.org/doctors/1467404137/robert-montgomery) is the Director of the NYU Langone Transplant Institute, and Chair and a Professor in their Department of Surgery, where he oversees a diverse team of medical and surgical specialists who provide a wide variety of surgery and transplantation services including bone marrow, heart, kidney, liver, lung, and facial transplantation.

Dr. Montgomery received his Doctor of Medicine with Honor from the University of Rochester School of Medicine, his Doctor of Philosophy from Balliol College, The University of Oxford, England in Molecular Immunology, and completed his general surgical training, multi-organ transplantation fellowship, and postdoctoral fellowship in Human Molecular Genetics at Johns Hopkins.

For over a decade Dr. Montgomery served as the Chief of Transplant Surgery and the Director of the Comprehensive Transplant Center at Johns Hopkins.

Dr. Montgomery was part of the team that developed the laparoscopic procedure for live kidney donation, a procedure that has become the standard throughout the world. He and the Hopkins team conceived the idea of the Domino Paired Donation (kidney swaps), the Hopkins protocol for desensitization of incompatible kidney transplant patients, and performed the first chain of transplants started by an altruistic donor. He led the team that performed the first 2-way, 3-way, 4-way, 5-way, 6-way, and 8-way domino paired donations, and in the first 10-way open chain donation.

Bioengineering better photosynthesis increases yields in food crops

For the first time, RIPE researchers have proven that multigene bioengineering of photosynthesis increases the yield of a major food crop in field trials. After more than a decade of working toward this goal, a collaborative team led by the University of Illinois has transgenically altered soybean plants to increase the efficiency of photosynthesis, resulting in greater yields without loss of quality.

Results of this magnitude couldn’t come at a more crucial time. The most recent UN report, The State of Food Security and Nutrition in the World 2022, found that in 2021 nearly 10% of the world population was hungry, a situation that has been steadily worsening over the last few years and eclipsing all other threats to global health in scale. According to UNICEF, by 2030, more than 660 million people are expected to face food scarcity and malnutrition. Two of the major causes of this are inefficient food supply chains (access to food) and harsher growing conditions for crops due to climate change. Improving access to food and improving the sustainability of food crops in impoverished areas are the key goals of this study and the RIPE project.

Realizing Increased Photosynthetic Efficiency, or RIPE, is an international research project that aims to increase global food production by improving photosynthetic efficiency in food crops for smallholder farmers in Sub-Saharan Africa.

Engineers solve data glitch on NASA’s Voyager 1

Engineers have repaired an issue affecting data from NASA’s Voyager 1 spacecraft. Earlier this year, the probe’s attitude articulation and control system (AACS), which keeps Voyager 1’s antenna pointed at Earth, began sending garbled information about its health and activities to mission controllers, despite operating normally. The rest of the probe also appeared healthy as it continued to gather and return science data.

The team has since located the source of the garbled information: The AACS had started sending the data through an onboard computer known to have stopped working years ago, and the computer corrupted the information.

Suzanne Dodd, Voyager’s project manager, said that when they suspected this was the issue, they opted to try a low-risk solution: commanding the AACS to resume sending the data to the right computer.