Toggle light / dark theme

Regeneration, Resuscitation & Biothreat Countermeasures — Commander Dr. Jean-Paul Chretien, MD, Ph.D., Program Manager, Biological Technology Office, DARPA


Commander Dr. Jean-Paul Chretien, MD, Ph.D. (https://www.darpa.mil/staff/cdr-jean-paul-chretien) is a Program Manager in the Biological Technology Office at DARPA, where his research interests include disease and injury prevention, operational medicine, and biothreat countermeasures. He is also responsible for running the DARPA Triage Challenge (https://triagechallenge.darpa.mil/).

Prior to coming to DARPA, CDR Dr. Chretien led the Pandemic Warning Team at the Defense Intelligence Agency’s National Center for Medical Intelligence, and as a naval medical officer, his previous assignments include senior policy advisor for biodefense in the White House Office of Science and Technology Policy; team lead for Innovation & Evaluation at the Armed Forces Health Surveillance Branch; and director of force health protection for U.S. and NATO forces in southwestern Afghanistan.

A proud mentor to nine graduate students and Oak Ridge Institute for Science and Education (ORISE) fellows, CDR Dr. Chretien received the Rising Star Award from the American College of Preventive Medicine, Best Publication of the Year Award from the International Society for Disease Surveillance, and Skelton Award for Public Service from the Harry S. Truman Scholarship Foundation. He has published over 50 peer-reviewed journal articles and 10 book chapters.

CDR Dr. Chretien earned a Bachelor of Science degree in political science from the United States Naval Academy, Master of Health Science in biostatistics and Doctor of Philosophy in genetic epidemiology degrees from the Johns Hopkins Bloomberg School of Public Health, and a Doctor of Medicine degree from the Johns Hopkins University School of Medicine. He completed his residency in general preventive medicine at the Walter Reed Army Institute of Research and fellowship in health sciences informatics at the Johns Hopkins University School of Medicine.

The term now covers all types of technology and innovation designed to address health issues that solely, or disproportionately, impact women’s health, from menstrual cycle tracking apps and sexual wellness products to cardiovascular medical devices and mental health therapies.

Giving FemTech its own name helped the community of people working in the sector to find each other, but also gave investors reassurance about where they were putting their money, Tin said.

“It’s a little easier to say you’re invested in FemTech than, you know, a company that helps women not pee their pants … It kind of bridged the gap over to men as well, which was important, still is important, because so many investors are men.”

Dedicated to ending the HIV epidemic — dr. moupali das, MD, MPH, executive director, HIV clinical research, gilead sciences.


Dr. Moupali Das, MD, MPH, is Executive Director, HIV Clinical Research, in the Virology Therapeutic Area, at Gilead Sciences (https://www.gilead.com/), where she leads the pre-exposure prophylaxis (PrEP) clinical drug development program, including evaluating the safety and efficacy of a long-acting, twice yearly, subcutaneous injection being studied for HIV prevention. Her responsibilities also include expanding the populations who may benefit from PrEP.

Dr. Das has led high-performing teams in academic medicine, public health, implementation science, and cross-functionally in drug development. She has successfully helped develop, implement, and evaluate how to better test, link to care, increase virologic suppression, and improve quality of life for people with HIV, and to prevent HIV in those who may benefit from PrEP.

During the COVID19 pandemic, Dr. Das assisted her colleagues in the COVID-19 treatment program, leading the evaluation of a COVID-19 treatment for use in pregnant women and children from the compassionate use program.

After completing her undergraduate degree in Biochemical Sciences at Harvard College, medical school and internal medicine residency training at Columbia University and New York Presbyterian Hospital, Dr. Das came to University of California, San Francisco (UCSF) for fellowship training in Infectious Diseases and to University of California, Berkeley for her MPH in Epidemiology. She cared for HIV patients at San Francisco General’s storied Ward 86 clinic and attended on the inpatient ID Consult Service. She is recognized internally and externally for her expertise in epidemiology, public health, advocacy, and community engagement.

The soot produced by unburnt hydrocarbon flames is the second largest contributor to global warming, while also harming human health. Researchers have developed state-of-the-art, high-speed imaging techniques to study turbulent flames, yet they are limited to an imaging rate of million-frames-per-second. Physicists are therefore keen to obtain a complete picture of flame-laser interactions via single-pulse imaging.

In a new report published in Light: Science & Applications, Yogeshwar Nath Mishra and a research team at the Caltech Optical Imaging Laboratory, the NASA Jet propulsion lab, department of physics, and the Institute of Engineering Thermodynamics in the U.S., and Germany, used single-shot laser-sheet comprised ultrafast photography per billion frames per second, for the first time, to observe the dynamics of laser-flames.

The team noted laser-induced incandescence, elastic light scattering and the fluorescence of soot precursors such as polycyclic aromatic hydrocarbons in , with a single nanosecond laser pulse. The research outcomes provide strong experimental evidence to support soot inception and growth mechanisms in flames. Mishra and the team combined a variety of techniques to probe the short-lived species in turbulent environments to unravel the mysteries of hot plasma, nuclear fusion and sonoluminescence.

Rational Virology Research For Human Health & Pandemic Prevention — Dr. Felicia Goodrum Sterling, Ph.D. Professor, Department of Immunobiology, The University of Arizona.


Dr. Felicia Goodrum, Ph.D. (https://profiles.arizona.edu/person/fgoodrum) is Interim Associate Department Head and Professor of Immunobiology, as well as Professor, BIO5 Institute, Cellular and Molecular Medicine, Molecular and Cellular Biology, Cancer Biology And Genetics Graduate Interdisciplinary Programs, at the University of Arizona.

Dr. Goodrum earned her Ph.D. from Wake Forest University School of Medicine studying cell cycle restrictions to adenovirus replication and then trained as a postdoctoral fellow at Princeton University in the laboratory of Dr. Thomas Shenk studying human cytomegalovirus latency.

Dr. Goodrum joined the faculty at the University of Arizona in 2006, and her long-standing research focus is to understand the molecular virus-host interactions important to human cytomegalovirus (CMV) latency and persistence in the host. She has focused on identifying viral and host determinants mediating the switch between latent and replicative states. The goal of her research program is to define the mechanistic underpinnings of HCMV latency and reactivation to lay the foundation for clinical interventions to control CMV disease in all settings.

Dr. Goodrum is the recipient of the Howard Temin Award from the National Cancer Institute, the Pew Scholar in Biomedical Sciences Award, and the Presidential Award for Early Career Scientists and Engineers.

Join us on Patreon! https://www.patreon.com/MichaelLustgartenPhD

Discount Links:
NAD+ Quantification: https://www.jinfiniti.com/intracellular-nad-test/
Use Code: ConquerAging At Checkout.

Green Tea: https://www.ochaandco.com/?ref=conqueraging.

Oral Microbiome: https://www.bristlehealth.com/?ref=michaellustgarten.

Epigenetic Testing: https://bit.ly/3Rken0n.
Use Code: CONQUERAGING!

At-Home Blood Testing: https://getquantify.io/mlustgarten.