Simply the smell of seafood can make those with an allergy to it violently ill—and therefore more likely to avoid it. The same avoidance behavior is exhibited by people who develop food poisoning after eating a certain meal.
Scientists have long known that the immune system played a key role in our reactions to allergens and pathogens in the environment, but it was unclear whether it played any role in prompting these types of behaviors towards allergic triggers.
According to Yale-led research published July 12 in the journal Nature, it turns out that the immune system plays a crucial role in changing our behaviors.
Researchers developed a new method called wildDISCO that uses standard antibodies to map the entire body of an animal using fluorescent markers. This revolutionary technique provides detailed 3D maps of structures, shedding new light on complex biological systems and diseases. WildDISCO has the potential to transform our understanding of intricate processes in health and disease and paves the way for exciting advancements in medical research. This technology was now introduced in Nature Biotechnology.
In the past, scientists relied on genetically modified animals or specialized labels to make specific structures and cells of interest visible in the entire body of an animal. But these approaches are expensive and time-consuming to create, especially when it comes to body-wide systems such as the nervous system.
A team of scientists from Helmholtz Munich, the LMU University Hospital and the Ludwig-Maximilians Universität München (LMU) now introduced a new method called wildDISCO, which makes use of standard antibodies to map whole bodies of mice. This ultimately enables the creation of detailed three-dimensional maps of normal and diseased structures in mammalian bodies in an easy-to-use and cost-efficient way.
Sports teams spend millions of dollars on their players’ health and fitness and any injuries can be detrimental to their players’ careers. Artificial intelligence (AI) has the potential to significantly change the way that sports spine injuries are diagnosed, treated, and managed. Tools such as Spindle and SpindleX are making it easy to prevent long-term injuries or spinal issues by detecting even the minutest variations in time. However, AI has just begun its foray into the field of healthcare and more importantly radiology or spine imaging.
With AI-related radiology imaging, it is becoming easier to prevent and cure injuries we didn’t even know existed. AI-assisted reports are helping physicians and surgeons take better and more accurate decisions and treatment plans, saving millions of dollars in the healthcare industry. Here are a few examples of how AI is improving the treatment of sports-related spine injuries:
The innate immune system is able to identify foreign invaders and immediately respond to them. This system is important in order to protect the body from harmful substances.
The response to an infection triggers the arrival of cells called neutrophils, which attack the infection, followed by macrophages that attack bacteria and viruses.
Macrophages release cytokines in order to communicate with other cells when they encounter an enemy. Cytokines are small proteins that carry information. The immune system is activated by cytokines, which give the immune cells direction to fight.
Developing Novel DNA-Based Mechano-Technologies For Human Health — Dr. Khalid Salaita, Ph.D. — Emory University
Dr. Khalid Salaita, Ph.D. (https://www.salaitalab.com/salaita) is a Professor of Chemistry at Emory University in Atlanta, Georgia (USA), program faculty in the Department of Biomedical Engineering at Georgia Tech and Emory, program member of Cancer Cell Biology at Winship Cancer Institute, and most recently is the recent winner Future Insight Prize given by Merck KGaA, Darmstadt, Germany (https://www.emdgroup.com/en/research/open-innovation/futurei…aming.html) for his cutting edge work in the area of mechanobiology.
Dr. Salaita earned his B.S. in Chemistry, from Old Dominion University, his Ph.D. in Chemistry from Northwestern University, completed a postdoctoral fellowship in the Department of Chemistry at the University of California, Berkeley, and then started his own lab at Emory University, investigating the interface between living systems and engineered nanoscale materials. To achieve this goal, his group has pioneered the development of tools like molecular force sensors, DNA mechano-technology, smart therapeutics, and nanoscale mechanical actuators to help manipulate living cells.
In recognition of his work, Dr. Salaita has received a number of awards, most notably: the Alfred P. Sloan Research Fellowship, the Camille-Dreyfus Teacher Scholar award, the National Science Foundation Early CAREER award, and the Kavli Fellowship.
Dr. Salaita is currently a member of the Enabling Bioanalytical and Imaging Technologies (EBIT) study Section and an Associate Editor of Smart Materials. His program has been supported by NSF, NIH, and DARPA.
Michael Shiloh had been studying tuberculosis for about two decades when he started wondering about a seemingly basic question: What makes people with TB cough? This is the disease’s hallmark symptom and a main mode of transmission, but despite training as an infectious disease physician and many years of probing the pathogen as a researcher, Shiloh realized that he didn’t know. A quick search of the literature suggested that “essentially nothing had been studied about it, at least not at the molecular level,” he says.
Elucidating the role of cough in illness means first appreciating its role in health. “Cough is one of these critical defensive processes that we have to clear the respiratory system,” says Stuart Mazzone, a neuroscientist at the University of Melbourne. But it also contributes to disease spread, as research by Shiloh, now at the University of Texas Southwestern Medical Center, and others has described. And dysfunctional control of coughing — resulting in too much coughing or not enough — can cause serious health problems.
Here’s a look at how and why we cough, and some of the ways that coughing can go wrong.
Working on your muscles could help delay the onset of Alzheimer’s symptoms, researchers have revealed.
Researchers from the Federal University of São Paulo and the University of São Paulo in Brazil have uncovered strong evidence that resistance training – where muscles are worked against a weight or a force – could have significant consequences for the brains of dementia patients.
Before you hurriedly renew your gym membership or break out the home exercise equipment, it’s worth bearing in mind that this was a mouse model study. Nevertheless, the same principles are likely to apply to humans.
A new study by researchers at the University of Cambridge reveals a surprising discovery that could transform the future of electrochemical devices. The findings offer new opportunities for the development of advanced materials and improved performance in fields such as energy storage, brain-like computing, and bioelectronics.
Electrochemical devices rely on the movement of charged particles, both ions and electrons, to function properly. However, understanding how these charged particles move together has presented a significant challenge, hindering progress in creating new materials for these devices.
In the rapidly evolving field of bioelectronics, soft conductive materials known as conjugated polymers are used for developing medical devices that can be used outside of traditional clinical settings. For example, this type of materials can be used to make wearable sensors that monitor patients’ health remotely or implantable devices that actively treat disease.
Fight fibromyalgia fatigue, pain, and stress with these tips from WebMD. See how to get the rest you need, talk with your family, get energy from exercise, and more.