Toggle light / dark theme


The BBC reports that Sir Edmund Hillary, the New Zealand native who, along with Sherpa Tenzing Norgay of Nepal was the first man to successfully summit Mount Everest, had died at 88 years of age. Hillary was apparently injured this past April when he fell while visiting Nepal and the reports state that this injury contributed to a decline in his health that ultimately culminated in his passing.

While his fame was first and foremost as a result of his triumphant effort on Everest in 1953, he was revered in Nepal for his efforts to help the Nepalese Sherpas improve their access to medicine, education and other modern conveniences and his legacy will continue in the form of those edifices in Nepal that exist as a result of his work.

Sir Ed, as he preferred to be called, was also something of an environmentalist. Upon a recent visit to the base of Everest he was so dismayed by the condition of the mountain (as a result of the decades of equipment including things such as spent oxygen bottles and massive amounts of inorganic and thus non-biodegradable gear) that he called for a fifty year moratorium on permits being issued to attempt ascents on the peak. He called upon the climbing community to make an effort to repair the damage to the fabled crag by packing out the detritus that was scarring his beloved mountain.

While the passing of this great man has relatively little to do with the mission of the Lifeboat Foundation, it seemed appropriate to report on his passing simply because he demonstrated that with sufficient will even things that are seemingly impossible are well within the grasp of those for whom failure is not an option.

At the Lifeboat Foundation we recognize this fact. We cannot and will not fail in our efforts to identify and defend against any and all threats to humanity. While it may sadden us to learn of the passing of a great adventurer like Sir Edmund Hillary, his accomplishments should serve as a source of motivation for each of us as we pursue our own personal Everests.

Following is a link to a wonderful video of the successful effort to summit the world’s highest peak. Consider for a moment how primitive this equipment is compared with what is used today. It is a great reminder of just how far we’ve come in a little over half a century and should prove to be a source of inspiration to us all. Video Link


Supplying a substantial percentage of America’s future electrical power supply from space using SBSP (space-based solar power) systems can only be expressed as a giant leap forward in space operations. Each of the hundreds of solar power satellites needed would require 10,000–20,000 tons of components transported to orbit, assembled in orbit, and then moved to geostationary orbit for operations. The scale of logistics operations required is substantially greater than what we have previously undertaken. Periodically, industrial operations experience revolutions in technology and operations. Deep sea oil exploration is an example. Within a couple decades, entirely new industrial operations can start and grow to significant levels of production. The same will happen with space industrialization when—not if—the right product or service is undertaken. SBSP may be the breakthrough product for leading the industrialization of space. This was our assumption in conducting the study. As the cost of oil approaches $100 a barrel, combined with the possibility of the world reaching peak oil production in the near future, this may turn out to be a valid assumption.

Source: The Space Review

From Physorg.com:

Humanity has long since established a foothold in the Artic and Antarctic, but extensive colonization of these regions may soon become economically viable. If we can learn to build self-sufficient habitats in these extreme environments, similar technology could be used to live on the Moon or Mars.

The average temperature of the Antarctic coast in winter is about −20 °C. As if this weren’t enough, the region suffers from heavy snowfall, strong winds, and six-month nights. How can humanity possibly survive in such a hostile environment?

So far we seem to have managed well; Antarctica has almost forty permanently staffed research stations (with several more scheduled to open by 2008). These installations are far from self-sufficient, however; the USA alone spent 125 million dollars in 1995 on maintenance and operations.[1] All vital resources must be imported—construction materials, food, and especially fuel for generating electricity and heat.

Modern technology and construction techniques may soon permit the long-term, self-sufficient colonization of such extreme environments.

Why would anyone want to live there? Exceptional scientific research aside, the Arctic is though to be rich in mineral resources (oil in particular). The Antarctic is covered by an ice sheet over a mile thick, making any mineral resources it may have difficult to access. Its biological resources, however, have great potential. Many organisms adapted to extreme cold have evolved unusual biochemical processes, which can be leveraged into valuable industrial or medical techniques.[2] Alexander Bolonkin and Richard Cathcart are firm believers in the value of this chilling territory. “Many people worldwide, especially in the Temperate Zones, muse on the possibility of humans someday inhabiting orbiting Space Settlements and Moon Bases, or a terraformed Mars” Bolonkin points out, “but few seem to contemplate an increased use of ~25% of Earth’s surface—the Polar Regions.”

Indeed, the question of space exploration is intriguing. We would all like to know whether there is life on Mars, but robot probes can only perform the experiments they take along with them. Only humans are flexible enough to explore a new territory in detail and determine whether there are enough resources to sustain a long-term presence. Does modern technology really permit the design of lightweight, energy-efficient habitats suitable for other worlds?

That would be cool if it did! Although a few domed cities in the polar regions couldn’t hurt mankind’s overall survivability, space — and developing effective countermeasures — have a lot more security to offer.