Toggle light / dark theme

Stable nuclear expression of ATP8 and ATP6 genes rescues a mtDNA Complex V null mutant

The SENS Research Foundation has finally published this anticipated and important paper on mitochondrial gene transfer which has ramifications for mitochondrial diseases and more importantly one of the processes of aging. It is great to see that finally after a decade of criticism Aubrey de Grey has proven his approach is viable.


We explore the possibility of re-engineering mitochondrial genes and expressing them from the nucleus as an approach to rescue defects arising from mitochondrial DNA mutations. We have used a patient cybrid cell line with a single point mutation in the overlap region of the ATP8 and ATP6 genes of the human mitochondrial genome. These cells are null for the ATP8 protein, have significantly lowered ATP6 protein levels and no Complex V function. Nuclear expression of only the ATP8 gene with the ATP5G1 mitochondrial targeting sequence appended restored viability on Krebs cycle substrates and ATP synthesis capabilities but, failed to restore ATP hydrolysis and was insensitive to various inhibitors of oxidative phosphorylation. Co-expressing both ATP8 and ATP6 genes under similar conditions resulted in stable protein expression leading to successful integration into Complex V of the oxidative phosphorylation machinery. Tests for ATP hydrolysis / synthesis, oxygen consumption, glycolytic metabolism and viability all indicate a significant functional rescue of the mutant phenotype (including re-assembly of Complex V) following stable co-expression of ATP8 and ATP6. Thus, we report the stable allotopic expression, import and function of two mitochondria encoded genes, ATP8 and ATP6, resulting in simultaneous rescue of the loss of both mitochondrial proteins.

Read more

Trauma’s epigenetic fingerprint observed in children of Holocaust survivors

Amazing research on how PTSD can be pass down to the survivor’s offspring due to trauma altering the traumatic victim’s DNA Sequence.


Philadelphia, PA, September 1, 2016 – The children of traumatized people have long been known to be at increased risk for posttraumatic stress disorder (PTSD), and mood and anxiety disorders. However, according to Rachel Yehuda from the James J. Peters Veterans Affairs Medical Center at the Icahn School of Medicine at Mount Sinai who led a new study in Biological Psychiatry, there are very few opportunities to examine biologic alterations in the context of a watershed trauma in exposed people and their adult children born after the event.

One of the most intensively studied groups in this regard are the children of survivors of the Nazi concentration camps. From the work of Yehuda and others, there has been growing evidence that concentration camp survivors and their children might show changes in the epigenetic regulation of genes.

Epigenetic processes alter the expression of a gene without producing changes in the DNA sequence. DNA methylation is one of these epigenetic modifications, which regulates genome function through processes that add or remove a methyl group to a specific site in DNA, potentially affecting gene transcription.

Read more

Pharmacogenetics Informs Clinical Practice

I remember 4 years ago at a CIO Life Sciences Conference in AZ when one of the leaders over a research lab mention the desire to finally enable patients to share their entire DNA sequence on a thumb drive with their doctor in order to be treated properly as well as have insights on the patient’s future risks. However, limitations such as HIPAA was brought up in the discussion. Personally, with how we’re advancing things like synthetic biology which includes DNA data storage, cell circuitry, electronic tattoos, etc. thumb drive maybe too outdated.


The circle that is personalized medicine consists of more than just doctor, patient, and patient data. Other elements are in the loop, such as EHR systems that incorporate gene-drug information and updated clinical guidelines.

Read more

Regulation of cancer epigenomes with a histone-binding synthetic transcription factor

Chromatin proteins have expanded the mammalian synthetic biology toolbox by enabling control of active and silenced states at endogenous genes. Others have reported synthetic proteins that bind DNA and regulate genes by altering chromatin marks, such as histone modifications. Previously we reported the first synthetic transcriptional activator, the “Polycomb-based transcription factor” (PcTF), that reads histone modifications through a protein-protein interaction between the PCD motif and trimethylated lysine 27 of histone H3 (H3K27me3). Here, we describe the genome-wide behavior of PcTF. Transcriptome and chromatin profiling revealed PcTF-sensitive promoter regions marked by proximal PcTF and distal H3K27me3 binding. These results illuminate a mechanism in which PcTF interactions bridge epigenetic marks with the transcription initiation complex. In three cancer-derived human cell lines tested here, many PcTF-sensitive genes encode developmental regulators and tumor suppressors. Thus, PcTF represents a powerful new fusion-protein-based method for cancer research and treatment where silencing marks are translated into direct gene activation.

Read more

Genetic ‘Extinction’ Technology Rejected

OAHU, HAWAI’I —(ENEWSPF)–September 1, 2016. As thousands of government representatives and conservationists convene in Oahu this week for the 2016 World Conservation Congress, international conservation and environmental leaders are raising awareness about the potentially dangerous use of gene drives — a controversial new synthetic biology technology intended to deliberately cause targeted species to become extinct.

Members of the International Union for the Conservation of Nature (IUCN), including NGOs, government representatives, and scientific and academic institutions, overwhelmingly voted to adopt a de facto moratorium on supporting or endorsing research into gene drives for conservation or other purposes until the IUCN has fully assessed their impacts. News of the August 26 digital vote comes as an important open letter to the group is being delivered.

Scientists and environmental experts and organizations from around the globe have advocated for a halt to proposals for the use of gene drive technologies in conservation. Announced today, a long list of environmental leaders, including Dr. Jane Goodall, DBE, genetics professor and broadcaster Dr. David Suzuki, Dr. Fritjof Capra, entomologist Dr. Angelika Hilbeck, Indian environmental activist Dr. Vandana Shiva and organic pioneer and biologist Nell Newman, have lent their support to the open letter: “A Call for Conservation with a Conscience: No Place for Gene Drives in Conservation.” The letter states, in part: “Gene drives, which have not been tested for unintended consequences, nor fully evaluated for ethical and social impacts, should not be promoted as conservation tools.”

Read more

Solid-State Nanopores Unravel Twisted DNA Mystery

Cancer thrives when mutated cells undergo frequent division. Most anti-cancer drugs work by inserting themselves in between the DNA base pairs that encode our genetic information. This process is known as intercalation, and it can result in subtle changes to the DNA molecule’s geometric shape or tertiary structure. These structural changes interfere with the DNA’s transcription and a cell’s replication process, ultimately resulting in cell death.

While intercalating agents used in chemotherapy drugs are highly effective in fighting cancer, they also may kill important cells in the body and lead to other complications such as heart failure. Therefore, researchers are always searching for faster, cheaper and more accurate tools to aid in the design of next-generation anti-cancer drugs with reduced side effects.

A paper published in ACS Nano, one of the top nanotechnology journals in the world, explores this topic. “Modeling and Analysis of Intercalant Effects on Circular DNA Conformation,” (LINK TO http://pubs.acs.org/doi/abs/10.1021/acsnano.6b04876) focuses on the effect of the intercalating agent ethidium bromide (a mimic for many chemotherapy drugs) on the tertiary structure of DNA.

Read more

Be afraid. Be very afraid: IBM’s Watson makes AI trailer about ‘Morgan’ AI movie

Experts may reassure us that artificial intelligence won’t take over the world anytime soon – but they just might invade the multiplex.

At least that’s the plot developing at IBM, where the Watson artificial-intelligence team programmed a computer to come up with a scary trailer for “Morgan,” a thriller about a genetically modified, AI-enhanced super-human.

Read more