SDI Productions/iStock.
In an extensive validation for all lovers of WFH, a new study says that the carbon footprint of remote workers is significantly less than that of onsite workers.
A multispectral, super-low-dose photoacoustic microscopy (SLD-PAM) system developed by City University of Hong Kong (CUHK) achieves significantly higher sensitivity than traditional optical resolution photoacoustic imaging.
By providing an exceptionally high level of sensitivity, SLD-PAM could help broaden the use of photoacoustic microscopy in biomedical applications. In the future, it could translate to clinical settings; for example, it could be used for ophthalmic exams where a low-power laser is preferred for the patient’s safety and comfort. Long-term monitoring of pharmacokinetics or blood flow also requires low-dose imaging to alleviate perturbation to tissue function.
The Earth’s oldest surface layer forming continents, termed its crust, is approximately 4 billion years old and is comprised of 25–50km-thick volcanic rocks known as basalts. Originally, scientists thought that one complete lithospheric crust covered the entire planet, compared to the individual plates we see today which were believed to have only begun formation 1 billion years later. However, attitudes towards this hypothesis are being challenged.
The formation mechanism of this continental crust is somewhat enigmatic, with academics now suggesting it may have been driven by plate tectonics, the movement of Earth’s major surface plates across the globe over billions of years, forming the landmasses and topographic features which we see today.
One theory focuses on when the plates converge, often causing one to subduct beneath the other, resulting in partial melting to change magma composition, while another studies mechanisms occurring within the crust itself (at less than 50km depth) that are entirely separate from plate boundaries but also cause partial melting.
Some 2,000 years ago in ancient Rome, glass vessels carrying wine or water, or perhaps an exotic perfumes, tumble from a table in a marketplace, and shatter to pieces on the street. As centuries passed, the fragments were covered by layers of dust and soil and exposed to a continuous cycle of changes in temperature, moisture, and surrounding minerals.
Now these tiny pieces of glass are being uncovered from construction sites and archaeological digs and reveal themselves to be something extraordinary. On their surface is a mosaic of iridescent colors of blue, green and orange, with some displaying shimmering gold-colored mirrors.
These beautiful glass artifacts are often set in jewelry as pendants or earrings, while larger, more complete objects are displayed in museums.