Toggle light / dark theme

The food retail, foodservice and industrial cooling industries are in the midst of a momentous transition in refrigeration system architectures. Regulations are driving the need to implement sustainable systems with options growing exponentially. Emerson’s natural refrigerant expert, Andre Patenaude, provides advice on the best alternatives to future proof your system.

To get to what many call the “end game” of achieving compliance and meeting corporate sustainability objectives, more businesses are looking at systems based on natural refrigerants to help them achieve these goals.

The term “natural refrigerant” refers to substances that naturally occur in the environment. Unlike the synthetic refrigerants that have commonly been used in refrigeration applications — including hydrofluorocarbons (HFCs) and chlorofluorocarbons (CFCs) — ammonia (NH3 or refrigerant name R-717), propane (refrigerant name R-290) and carbon dioxide (CO2 or refrigerant name R-744) are three naturally occurring refrigerants that pose very little threat to the environment.

Read more

There 7.68 billion acres of arable land. if everyone did this and lived one one tenth of an acre then that’s room for 76 billion people just on the arable land where there is actually 36 billion acres of land on the planet.

If farming were turned into vertical farming building with ten floors a piece at 1/10th and acre per level that’s 760 billion. At 100 floors that’d be 7.6 trillion. I would need to review an Isaac Arthur video about the maximum occupancy of the planet, there may be heat problems with trillions of people on the planet.

A tenth of an acre would be a square around 65 × 65 feet, or so.


Over 6,000 pounds of food per year, on 1/10 acre located just 15 minutes from downtown Los Angeles. The Dervaes family grows over 400 species of plants, 4,300 pounds of vegetable food, 900 chicken and 1,000 duck eggs, 25 lbs of honey, plus seasonal fruits throughout the year.

From 1/10th of an acre, four people manage to get over 90% of their daily food and the family reports earnings of $20,000 per year (AFTER they eat from what is produced). This is done without the use of the expensive & destructive synthetic chemicals associated with industrial mono-cropping, while simultaneously improving the fertility and overall condition of the land being used to grow this food on. Scaled up to an acre, that would equal $200,000 per year!

Attention all seaweed farmers! US DoE and DARPA wants you.


Did you know that the amount of commercially produced seaweed almost hit the mark of 25 million metric tons last year? China and Indonesia dominate the global seaweed-to-food market, and now the Department of Energy has been casting a hungry eye on the potential for the US to get in on the action, with a particular focus on converting seaweed to biofuel and other high value products.

Of course, there is a problem. Growing seaweed — aka macroalgae — for food is one thing. The algae-to-energy cycle is quite another thing entirely. That’s why the Energy Department has called upon its cutting edge funding division, ARPA-E, to put out a call for the super macroalgae farmer of the future.

Read more

Food trends change all the time, and not just dependent on where you live, but also when. For example, 100 years ago they were not eating most of the stuff we have today. Pop Tarts, Cheetos, and Gatorade would certainly not have existed, and if you were to go back in time now and try and introduce these things, they would probably get thrown at you. But, the point is that sometimes you just can’t help what food is introduced around you and accepted as the norm, and over the next 30 years, we will see odder but edible manifestations are coming our way. Below are eight future foods that are not a million miles away from being introduced into society and are being worked on now:

Read more