A new study suggests that printing drugs on a QR code that patients can scan with their phones could pave the way for personalized medicine.
Category: food – Page 278
As a group, simple creatures following simple rules can display a surprising amount of complexity, efficiency, and even creativity. Known as swarm intelligence, this trait is found throughout nature, but researchers have recently begun using it to transform various fields such as robotics, data mining, medicine, and blockchains.
Ants, for example, can only perform a limited range of functions, but an ant colony can build bridges, create superhighways of food and information, wage war, and enslave other ant species—all of which are beyond the comprehension of any single ant. Likewise, schools of fish, flocks of birds, beehives, and other species exhibit behavior indicative of planning by a higher intelligence that doesn’t actually exist.
It happens by a process called stigmergy. Simply put, a small change by a group member causes other members to behave differently, leading to a new pattern of behavior.
A zero-soil vertical farm is growing fresh greens stacked over 30 feet high.
Make sure to follow Focal Point for more stories like this!
But Altered Carbon is only the latest bit of transhumanism to hit TV recently. From Black Mirror’s cookies and Philip K. Dick’s Electric Dreams’ mind-invading telepaths and alien bodysnatchers to Star Trek: Discovery’s surgical espionage and Travelers’ time-jumping consciousness, the classic tropes of body-hopping, body-swapping, and otherwise commandeering has exploded in an era on the brink, one in which longevity technology is accelerating more rapidly than ever, all while most people still trying to survive regular threats to basic corporeal health and safety.
Nobody wants these dumb meat-sack bodies anymore. Now TV is asking if what replaces them will be any better.
Warning over wider global health impacts after findings reveal hundreds of tonnes of colistin – the ‘antibiotic of last resort’ – are being shipped to India’s farms.
Thu 1 Feb 2018 05.50 EST Last modified on Thu 1 Feb 2018 11.20 EST.
If the goose that laid the golden egg had a real-life counterpart, it would be C. metallidurans. This hardy little bacterium consumes toxic metals and excretes tiny gold nuggets, but how and why it does so has never been fully understood. Now, German and Australian researchers have peered inside the microorganism and figured out that mechanism.
C. metallidurans has carved out a nice little niche for itself, usually living in soils full of heavy metals, which are toxic to most other microorganisms. But this bacteria has evolved a defense mechanism to help it not only survive but thrive under those conditions, and its ability to turn toxic compounds into gold is well known enough to once earn it a place in an alchemy art installation.
“Apart from the toxic heavy metals, living conditions in these soils are not bad,” says Dietrich H. Nies, an author on the new study. “There is enough hydrogen to conserve energy and nearly no competition. If an organism chooses to survive here, it has to find a way to protect itself from these toxic substances.”