Toggle light / dark theme

Caterpillar has been synonymous with big, heavy equipment — for farming, construction and mining — since Holt Manufacturing and C. L. Best Tractor merged in 1925 to form the Peoria, Illinois-based company. Over the years, tons of innovation have been built into the iconic yellow products, too, from the Model 20 Track-Type Tractor introduced in 1927 to the ginormous engines that helped power the Apollo 11 mission to the moon 50 years ago.

Coincidentally, one of Cat’s latest breakthroughs is self-driving, or autonomous, and remote-controlled mining equipment, which could very well find itself on the moon when NASA is scheduled to return to the lunar surface in 2024, with plans to build a permanent base near the orb’s south pole, part of the Artemis program.

Just as on terrestrial sites, Caterpillar fully or semi-autonomous bulldozers, graders, loaders and dump trucks could be utilized to build roads, housing and other infrastructure. Operator-less drilling and digging machines might mine water, oxygen-rich rocks and moon dust for use in 3D printing of various materials.

In the kale-filled facility at vertical farm startup Bowery Farming, it’s a piece of proprietary software that makes most of the critical decisions — like when to harvest and how much to water each plant. But it still takes humans to carry out many tasks around the farm. Katie Morich, 25, loves the work. But as roboticists make gains, will her employer need her forever? This is the fourth episode of Next Jobs, a series about careers of the future hosted by Bloomberg Technology’s Aki Ito.

Host, Producer: Aki Ito
Camera: Alan Jeffries, Brian Schildhorn
Co-Producer: David Nicholson
Editor: Victoria Daniell
Writers: Aki Ito and Victoria Daniell.

Through early adulthood, exposure to new experiences—like learning to drive a car or memorizing information for an exam—triggers change in the human brain, re-wiring neural pathways to imprint memories and modify behavior. Similar to humans, the behavior of Florida carpenter ants is not set in stone—their roles, whether it is protecting the colony or foraging for food, are determined by signals from the physical and social environment early in their life. But questions remain about how long they are vulnerable to epigenetic changes and what pathways govern social behavior in ants.

Now, a team led by researchers in the Perelman School of Medicine at the University of Pennsylvania discovered that a protein called CoRest, a neural repressor that is also found in humans, plays a central role in determining the of . The results, published today in Molecular Cell, also revealed that called Majors, known as “brawny” soldiers that protect colonies, can be reprogrammed to perform the foraging role—generally reserved for their sisters, the Minor ants—up to five days after they emerge as an adult ant. However, the reprogramming is ineffective at the 10-day mark, revealing how narrow the window of epigenetic plasticity is in ants.

“How becomes established in humans is deeply fascinating—we know it’s quite plastic especially during childhood and early adolescence—however, of course, we cannot study or manipulate this experimentally,” said the study’s senior author Shelley Berger, Ph.D., the Daniel S. Och University Professor in the departments of Cell and Developmental Biology and Biology, and director of the Penn Epigenetics Institute. “Ants, with their complex societies and behavior, and similar plasticity, provide a wonderful laboratory model to understand the underlying mechanisms and pathways.

The cells in your body are like computer software: they’re “programmed” to carry out specific functions at specific times. If we can better understand this process, we could unlock the ability to reprogram cells ourselves, says computational biologist Sara-Jane Dunn. In a talk from the cutting-edge of science, she explains how her team is studying embryonic stem cells to gain a new understanding of the biological programs that power life — and develop “living software” that could transform medicine, agriculture and energy.

This talk was presented at an official TED conference, and was featured by our editors on the home page.

On the first page of Heinz Koop’s fecal analysis test results, a bar showed where he fell on a gradient from green to red. A label above said, in German: “Overall dysbiosis.” Koop was not in the green or even the yellow regions, but a worrisome orange. It was a bad result — but, he says, “I was kind of happy.”

Doctors hadn’t given him a satisfying answer about his recurring bloody diarrhea and other gut troubles. But Koop had learned on Facebook that he could test his gut microbiome — the community of bacteria and other organisms living in his gastrointestinal tract — to look for problems. Koop ordered a test from a German laboratory called Medivere. The results said his gut microbes were imbalanced, which was something he thought he could treat. Soon he would be attempting to correct this imbalance by chauffering a friend’s fresh stool samples home to implant up his own colon.

Trillions of microbes living on and in our bodies, especially our guts, make up our microbiome. The bugs in our bowel are not just there to slow down our poop, as one researcher speculated in 1970, but are intricately connected to our health. Gut microbes help us digest our food, make critical vitamins, and keep pathogens out. Over the past decade or so, research into the microbiome has exploded as researchers have tried to tease apart the complex connections between our diseases and our resident microbes.

There’s a structural avalanche waiting inside that box of Rice Krispies on the supermarket shelf. Cornell researchers are now closer to understanding how those structures behave — and in some cases, behave unusually.

The researchers, led by James Sethna, professor of physics in the College of Arts and Sciences, have for the first time rendered a model for crackling noise in two dimensions. Their paper, “Unusual Scaling for Two-Dimensional Avalanches: Curing the Faceting and Scaling in the Lower Critical Dimension,” was published Oct. 30 in Physical Review Research. The paper’s lead author was Lorien X. Hayden, M.S. ‘15, Ph.D. ‘19, and co-author was Archishman Raju, M.S. ‘16, Ph.D. ‘18.

Milk enters Rice Krispies through a process known as “fluid invasion,” which is similar to the oil industry’s method of pumping pressurized water into porous sandstone to push out oil. The resulting noise — the cereal’s famous “snap, crackle and pop” — is a type of tiny “avalanche” that indicates a burst of milk invading pores in the puffed rice. Each avalanche is essentially composed of smaller-scale versions of itself, a proportionality shaped by “power law” distribution. Crackling noise also describes earthquakes, magnets and many other systems.

Please read 🙂.


Eat well for a long and healthy life – that’s a mantra that we’re all familiar with, but what are the best foods to help us achieve that goal? In this article, we give you an overview of some of the most healthful and nutritious foods.

Official figures indicate that, currently, the top three countries in the world with the highest life expectancy are the Principality of Monaco, Japan, and Singapore. These are places where the inhabitants experience a high quality of life, and an important element of that is eating healthful meals.

Often, we find praise for “superfoods” in the media – foods so high in nutritional value that they are seen as dietary superheroes.

ROME (Thomson Reuters Foundation) — It may sound like science fiction, but in a few short years the family dinner table may be laden with steak from a printer and other proteins produced from air, methane or volcanic microbes.

With the explosive success of vegan beef and burger substitutes developed by Beyond Meat and Impossible Foods, the alternative protein sector just keeps growing.

According to investment bank Barclays, alternative meat sales could reach $140 billion — or 10% of the global meat industry — within a decade, or a 10-fold increase from current levels.

God gives long life to those with a good heart??? Because they work??? Because they eat anything??? That is some of the answers one gets when asking these centurians what got them past 100??? Buster is a character he states he smokes and drinks so he does not know why??? I say mindset and treatment are very key in Japanese culture. In the west sadly families begin to shun and demonize the elderly in their family.


As life expectancy continues to soar, more and more of us are living to well over the age of 100. Award-winning filmmaker Daisy Asquith asks some of the oldest people in the world the question everyone wants answered: what is the secret to long life?

Want to watch more full-length Documentaries?