Toggle light / dark theme

In the last decade, lab-grown meat has emerged a sustainable alternative to traditional livestock methods. Livestock strain Earth’s land resources and account for about 14.5 percent of global greenhouse gas emissions. But while scientists can grow thin sheets of cow meat and scrape it together to form a patty, people eat with their eyes as much as their mouths. For lab-grown meat to replace a fresh steak, it needs to look like a steak.

Growing lab-based meat into 3D structures is difficult because it needs constant delivery of oxygen and nutrients. In living organisms, vascular systems fill that need. Researchers at Boston College previously showed that skeletonized spinach leaves, stripped of everything but their veiny, oxygen-dispersing, vascular system, can support patches of heart muscle cells. Now, they show that lab-grown meat can grow on skeletonized spinach, an essential step to growing steak-shaped meat in the lab.

Most deaths associated with lung cancer are due to the migration of cancer cells to other organs—a process called metastasis. Although cancer therapies have advanced, treatments for lung cancer metastasis continue to lag.

The root of red ginseng (Panax ginseng) has been used as food and herbal medicine for thousands of years globally and especially in Korea and China, owing to its medicinal properties. However, the composition and activities of red ginseng vary depending on the processing method. Recent studies have shown the efficacy of red ginseng against lung cancer metastasis.

A new study conducted by scientists at the Korea Institute of Science and Technology (KIST) reports the successful use of a microwave processing method for ginseng that increases trace amounts of Rk1 and Rg5 ginsenosides—a class of natural steroid sugars found almost exclusively in plants of the genus Panax —that effectively inhibit the metastasis of lung cancer.

And as well as producing less waste, insects can also live off food and biomass that would otherwise be thrown away, says Collins, contributing to the circular economy, where resources are recycled and reused. Insects can be fed agricultural waste, such as the stems and stalks from plants that people don’t eat, or scraps of food waste. To complete the recycling chain, their excrement can be used as fertiliser for crops.


Insects are a nutrition-dense source of protein embraced by much of the world. Why are some of us so squeamish about eating them?

Mastering meat production in this way will lead to advances in medical science and treatment.


“Cultured meat also ultimately offers the opportunity to create meat products that are more well-defined, tunable, and potentially healthier than meat products today, which are constrained by the biological limitations of the domestic animals from which they are derived.”

Owing to advances in industrial-scale cell culture process, the production of cultured meat has been largely standardized. Typically stem cells are first seeded into extracellular matrix scaffolds usually made of edible biomaterials like collagen and chitin. To support cellular metabolic activities, culture media containing nutrients like glucose and sera are next added to the bioreactor where continual mechanical motion facilitates good diffusion of nutrients and oxygen into and removal of metabolic waste products from the cells. After about 2–8 weeks, the cells grow into tissue layers and can be harvested and packaged.

Several key challenges remain in producing cultured meat including access to (proprietary) cell lines, high raw material cost, animal-source nutrients, and limited manufacturing scale. Despite this, immense progress has been made over the last decade. Here, we discuss the challenges and solutions to deliver cultured meat from a lab bench to a dining table.

Unlocking The Potential Of Salt and Drought Tolerant Crops And Seawater Agriculture — Professor Dr. Mark Tester — Center for Desert Agriculture, King Abdullah University of Science and Technology; Co-founder & CSO, Red Sea Farms.


Professor Dr. Mark Tester is Professor, Plant Science, and Associate Director, Center for Desert Agriculture, Biological and Environmental Science and Engineering Division, of King Abdullah University of Science and Technology (KAUST) in Saudi Arabia.

Prior to joining King Abdullah University of Science and Technology in February 2013, Professor Tester was a professor of plant physiology at the University of Adelaide and the Australian Centre for Plant Functional Genomics from 2009 to 2013. He has a PhD from the University of Cambridge in plant sciences.

Researchers have developed a brain-like computing device that is capable of learning by association.

Similar to how famed physiologist Ivan Pavlov conditioned dogs to associate a bell with food, researchers at Northwestern University and the University of Hong Kong successfully conditioned their circuit to associate light with pressure.

The research will be published today (April 30, 2021) in the journal Nature Communications.

But the biotech industry has argued that much of gene-editing simply accelerates processes that occur naturally, and that GMO-style regulation would shackle efforts to develop sustainable crops or advance research into human disease.


The European Commission launched a review of EU rules on genetically modified organisms (GMOs) on Thursday, opening the door to a possible loosening of restrictions for plants resulting from gene-editing technology.

Prompted by a 2018 ruling from the European Union’s top court that techniques to alter the genome of an organism should be governed by existing EU rules on GMOs, the Commission concluded that its 2001 legislation was “not fit for purpose”.

Gene-editing technology targets specific genes within an organism to promote certain characteristics or curb others, while genetic modification involves transferring a gene from one kind of organism to another.

Novel bio-sensing technologies to reduce food waste and optimize supply chains — a US$1 trillion need — katherine sizov — founder, strella biotechnology.


An estimated 40% of all global produce is wasted due to spoilage that occurs before it ever reaches consumers’ grocery bags. And this loss, not only represents loss due to quality or ripeness standards that consumers desire, but also a significant impact on global emissions and fresh water supplies that it took to produce and transport that produce, representing a combined figure of US$1 Trillion annually.

Katherine Sizov is the Founder of Strella Biotechnology (https://www.strellabiotech.com/), a company that builds novel bio-sensing platforms that can predict the ripeness of fruit and ultimately use this information to optimize supply chains by reducing food waste and increasing produce margins.

The subseafloor constitutes one of the largest and most understudied ecosystems on Earth. While it is known that life survives deep down in the fluids, rocks, and sediments that make up the seafloor, scientists know very little about the conditions and energy needed to sustain that life.

An interdisciplinary research team, led from ASU and the Woods Hole Oceanographic Institution (WHOI), sought to learn more about this ecosystem and the microbes that exist in the subseafloor. The results of their findings were recently published in Science Advances, with ASU School of Earth and Space Exploration assistant professor and geobiologist Elizabeth Trembath-Reichert as lead author.

To study this type of remote ecosystem, and the microbes that inhabit it, the team chose a location called North Pond on the western flank of the mid-Atlantic Ridge, a plate boundary located along the floor of the Atlantic Ocean.

An animal scientist with Wageningen University & Research in the Netherlands has created an artificial-intelligence-based application that can gauge the emotional state of farm animals based on photographs taken with a smartphone. In his paper uploaded to the bioRxiv preprint server, Suresh Neethirajan describes his app and how well it worked when tested.

Prior research and anecdotal evidence has shown that are more productive when they are not living under stressful conditions. This has led to changes in , such as shielding cows’ eyes from the spike that is used to kill them prior to slaughter to prevent stress hormones from entering the meat. More recent research has suggested that it may not be enough to shield from stressful situations—adapting their environment to promote peacefulness or even playfulness can produce desired results, as well. Happy cows or goats, for example, are likely to produce more milk than those that are bored. But as Neethirajan notes, the emotional state of an animal can be quite subjective, leading to incorrect conclusions. To address this problem, he adapted human face recognition software for use in detecting emotions in cows and pigs.

The system is called WUR Wolf and is based on several pieces of technology: the YOLO Object Detection System, the YOLOv4 that works with a convolution and Faster R-CNN, which also allows for detection of objects, but does so with different feature sets. For training, he used the Nvidia GeForece GTX 1080 Ti GRP running on a CUDA 9.0 computer. The data consisted of thousands of images of cows and pigs taken with a smartphone from six farms located in several countries with associated classification labels indicating which could be associated with which mood—raised ears on a cow, for example, generally indicate the animal is excited.