Toggle light / dark theme

How AI & Supercomputing Are Reshaping Aerospace & Finance w/ Allan Grosvenor (MSBAI)

Excellent Podcast interview Allan Grosvenor!…” How Allan built MSBAI to make super computing more accessible.

How AI-driven simulation is speeding up aircraft & spacecraft design.

Why AI is now making an impact in finance & algorithmic trading.

The next evolution of AI-powered decision-making & autonomous systems”


What if AI could power everything from rocket simulations to Wall Street trading? Allan Grosvenor, aerospace engineer and founder of MSBAI, has spent years developing AI-driven supercomputing solutions for space, aviation, defense, and even finance. In this episode, Brent Muller dives deep with Allan on how AI is revolutionizing engineering, the role of supercomputers in aerospace, and why automation is the key to unlocking faster innovation.

Multicore fiber testbed demonstrates precise optical clock signal transmission over 25 km

Researchers have shown, for the first time, that transmission of ultrastable optical signals from optical clocks across tens of kilometers of deployed multicore fiber is compatible with simultaneous transmission of telecommunications data.

The achievement demonstrates that these emerging high-capacity fiber optic networks could be used to connect optical clocks at various locations, enabling new scientific applications.

As global data demands continue to surge, multicore fiber is being installed to help overcome the limits of existing networks. These fibers pack multiple light-guiding cores into a single strand, greatly increasing capacity for applications like streaming, finance and artificial intelligence.

Redefining Cyber Value: Why Business Impact Should Lead the Security Conversation

Security teams face growing demands with more tools, more data, and higher expectations than ever. Boards approve large security budgets, yet still ask the same question: what is the business getting in return? CISOs respond with reports on controls and vulnerability counts – but executives want to understand risk in terms of financial exposure, operational impact, and avoiding loss.

The disconnect has become difficult to ignore. The average cost of a breach has reached $4.88 million, according to recent IBM data. That figure reflects not just incident response but also downtime, lost productivity, customer attrition, and the extended effort required to restore operations and trust. The fallout is rarely confined to security.

Security leaders need a model that brings those consequences into view before they surface. A Business Value Assessment (BVA) offers that model. It links exposures to cost, prioritization to return, and prevention to tangible value.

Scientists Invented a Way to Store Data in Plastic Molecules and It Could Someday Replace Hard Drives

If you thought storing data inside DNA was cool, here’s something even more fascinating. Scientists at the University of Texas at Austin (UT Austin) have invented a way to store digital information inside synthetic polymer molecules. In short, they are transforming tiny bits of plastic into memory banks.

They even used their molecular system to encode a complex 11-character password and then decode it using only electrical signals, without any power, and the expensive and bulky tools typically used for reading molecular data.

Record-breaking performance in data security achieved with quantum mechanics

A joint team of researchers led by scientists at King Abdullah University of Science and Technology (KAUST) and King Abdulaziz City for Science and Technology (KACST) has reported the fastest quantum random number generator (QRNG) to date based on international benchmarks. The QRNG, which passed the required randomness tests of the National Institute of Standards and Technology, could produce random numbers at a rate nearly a thousand times faster than other QRNG.

“This is a significant leap for any industry that depends on strong data security,” said KAUST Professor Boon Ooi, who led the study, which is published in Optics Express. KAUST Professor Osman Bakr also contributed to the study.

Random number generators are critical for industries that depend on security, such as health, finance, and defense. But the random number generators currently used are vulnerable because of an intrinsic flaw in their design.

China’s UBTech takes direct shot at Tesla with $20K humanoid robot

UBTech’s consumer shift comes as it faces financial strain. The company lost over 1.1 billion yuan ($153 million) last year. Its stock has fallen 45% over the past 12 months in Hong Kong.

Still, Tam welcomes the pressure. “White-hot competition creates a lot of pressure on a single company, but for the whole industry, it helps preserve good companies and eliminate bad ones,” he told Bloomberg.

As humanoid robots inch closer to everyday life, UBTech’s shift to the home market marks a high-stakes bet.

Monte Carlo method

Monte Carlo methods, or Monte Carlo experiments, are a broad class of computational algorithms that rely on repeated random sampling to obtain numerical results. The underlying concept is to use randomness to solve problems that might be deterministic in principle. The name comes from the Monte Carlo Casino in Monaco, where the primary developer of the method, mathematician Stanisław Ulam, was inspired by his uncle’s gambling habits.

Monte Carlo methods are mainly used in three distinct problem classes: optimization, numerical integration, and generating draws from a probability distribution. They can also be used to model phenomena with significant uncertainty in inputs, such as calculating the risk of a nuclear power plant failure. Monte Carlo methods are often implemented using computer simulations, and they can provide approximate solutions to problems that are otherwise intractable or too complex to analyze mathematically.

Monte Carlo methods are widely used in various fields of science, engineering, and mathematics, such as physics, chemistry, biology, statistics, artificial intelligence, finance, and cryptography. They have also been applied to social sciences, such as sociology, psychology, and political science. Monte Carlo methods have been recognized as one of the most important and influential ideas of the 20th century, and they have enabled many scientific and technological breakthroughs.