Breakthrough insights in science, technology & the future; philosophy & moral progress; artificial intelligence/robotics, biotechnology.
Breakthrough insights in science, technology & the future; philosophy & moral progress; artificial intelligence/robotics, biotechnology.
Hosted by: medical humanities and arts program, center for biomedical ethics, center for asian health research and education, center for innovation in global health, center for population health sciences, stanford center on longevity.
*Program is preliminary and subject to change.
Contact: [email protected]
In a bizarre experiment researchers from US and Russia connected the circulatory systems of young and old mice for a whole 12 weeks, slowing the older animals’ cellular aging and increasing their lifespan by as much as 10 percent.
The study expands on previous research showing there are components in young mammalian blood worth investigating for anti-aging health benefits.
As impressive as the results seem, they fall well short of supporting whole-blood transfusion treatments in humans. Putting aside the huge biological leap between mice and humans, there are numerous known and severe risks associated with such treatments for the receiver, not to mention questionable ethics of donation.
Year 2017 😗😁
The brain is really little more than a collection of electrical signals. If we can learn to catalogue those then, in theory, you could upload someone’s mind into a computer, allowing them to live forever as a digital form of consciousness, just like in the Johnny Depp film Transcendence.
But it’s not just science fiction. Sure, scientists aren’t anywhere near close to achieving such a feat with humans (and even if they could, the ethics would be pretty fraught), but there’s few better examples than the time an international team of researchers managed to do just that with the roundworm Caenorhabditis elegans.
C. elegans is a little nematodes that have been extensively studied by scientists — we know all their genes and their nervous system has been analysed many times.
Other commentators, though, were not convinced. Noam Chomsky, a professor of linguistics, dismissed ChatGPT as “hi-tech plagiarism”.
For years, I was relaxed about the prospect of AI’s impact on human existence and our environment. That’s because I always thought of it as a guide or adviser to humans. But the prospect of AIs taking decisions – exerting executive control – is another matter. And it’s one that is now being seriously entertained.
One of the key reasons we shouldn’t let AI have executive power is that it entirely lacks emotion, which is crucial for decision-making. Without emotion, empathy and a moral compass, you have created the perfect psychopath. The resulting system may be highly intelligent, but it will lack the human emotional core that enables it to measure the potentially devastating emotional consequences of an otherwise rational decision.
As ive said before we should at least attempt to reverse engineer brains of: mice, lab rats, crows, octupi, pigs, chimps, and end on the… human brain. it would be messy and expensive, and animal activsts would be runnin around it.
Lurking just below the surface of these concerns is the question of machine consciousness. Even if there is “nobody home” inside today’s AIs, some researchers wonder if they may one day exhibit a glimmer of consciousness—or more. If that happens, it will raise a slew of moral and ethical concerns, says Jonathan Birch, a professor of philosophy at the London School of Economics and Political Science.
As AI technology leaps forward, ethical questions sparked by human-AI interactions have taken on new urgency. “We don’t know whether to bring them into our moral circle, or exclude them,” said Birch. “We don’t know what the consequences will be. And I take that seriously as a genuine risk that we should start talking about. Not really because I think ChatGPT is in that category, but because I don’t know what’s going to happen in the next 10 or 20 years.”
In the meantime, he says, we might do well to study other non-human minds—like those of animals. Birch leads the university’s Foundations of Animal Sentience project, a European Union-funded effort that “aims to try to make some progress on the big questions of animal sentience,” as Birch put it. “How do we develop better methods for studying the conscious experiences of animals scientifically? And how can we put the emerging science of animal sentience to work, to design better policies, laws, and ways of caring for animals?”
This is older but this is just the tip of the iceberg. China is rumored to be working on genetic engineering to create “super soldiers” and they’re one country that isn’t stopped by ethics concerns. In the Prime TV series “The peripheral” it has something similar and I don’t want to spoil it beyond that. I think there’s a Vin Diesel movie called Blood Shot where he’s made into a super soldier. It’s a shame that this is used for warfare but the plus side is it’ll, some of the tech, will make its way down to civilian life such as the Internet did.
Loftus and Palmer (1974) investigated the extent to which eyewitness testimony can be influenced by variables other than a person’s original memory of an event.
Listen to this series of comprehensive podcasts which cover the core studies from the OCR A-Level Psychology (H567) syllabus, covering themes, debates, ethics, methodology and more.
–
Time stamps
*Background — 00:06
*Aims — 01:55
*Sample — 02:22
*Methodology and Procedure — 02:37
*Results — 04:59
*Conclusions — 06:23
*Evaluations — 08:31
–
Other platforms
🍏 Listen to this podcast on Apple Podcasts: https://podcasts.apple.com/us/podcast/loftus-and-palmer-1974…0533380766
The weaponization of the scientific and technological breakthroughs stemming from human genome research presents a serious global security challenge. Gene-editing pioneer and Nobel Laureate Jennifer Doudna often tells a story of a nightmare she once had. A colleague asked her to teach someone how her technology works. She went to meet the student and “was shocked to see Adolf Hitler, in the flesh.”
Doudna is not alone in being haunted by the power of science. Famously, having just returned home from Los Alamos in early 1945, John von Neumann awakened in panic. “What we are creating now is a monster whose influence is going to change history, provided there is any history left,” he stammered while straining to speak to his wife. He surmised, however, that “it would be impossible not to see it through, not only for military reasons, but it would also be unethical from the point of view of the scientists not to do what they knew is feasible, no matter what terrible consequences it may have.”
According to biographer Ananyo Bhattacharya, von Neumann saw what was happening in Nazi Germany and the USSR and believed that “the best he could do is allow politicians to make those [ethical and security] decisions: to put his brain in their hands.” Living through a devastating world war, the Manhattan Project polymath “had no trust left in human nature.”
Human cerebral organoids are three-dimensional biological cultures grown in the laboratory to mimic as closely as possible the cellular composition, structure, and function of the corresponding organ, the brain. For now, cerebral organoids lack blood vessels and other characteristics of the human brain, but are also capable of having coordinated electrical activity. They have been usefully employed for the study of several diseases and the development of the nervous system in unprecedented ways. Research on human cerebral organoids is proceeding at a very fast pace and their complexity is bound to improve. This raises the question of whether cerebral organoids will also be able to develop the unique feature of the human brain, consciousness. If this is the case, some ethical issues would arise. In this article, we discuss the necessary neural correlates and constraints for the emergence of consciousness according to some of the most debated neuroscientific theories. Based on this, we consider what the moral status of a potentially conscious brain organoid might be, in light of ethical and ontological arguments. We conclude by proposing a precautionary principle and some leads for further investigation. In particular, we consider the outcomes of some very recent experiments as entities of a potential new kind.