Toggle light / dark theme

New rapid prototyping method for microscale spiral devices

A team of researchers from Tohoku University and Okinawa Institute of Science and Technology (OIST) has achieved significant advancement in the field of microfluidics, allowing for precise and efficient manipulation of fluids in three-dimensional microscale environments. This work opens up new possibilities for bioanalytical applications, such as cell separations in the realm of medical diagnostics.

Details of their breakthrough were published in the journal Microsystems & Nanoengineering on January 22, 2024.

Microfluidic devices are designed to handle minuscule fluid volumes, allowing researchers to perform analyses and processes with remarkable precision and efficiency.

Cornell researchers develop breakthrough EV battery that charges under 5 mins

A research team led by Lynden Archer, professor and dean of Cornell Engineering, has developed a new lithium battery that can charge in as little as five minutes. This could help address anxiety associated with the charging time of electric vehicles (EVs) and increase their adoption.

In their bid to reduce emissions from transportation, countries worldwide are looking to electrify various modes of transport. Road-based transport such as cars, buses, and trucks have led this transformation, aiming to even ban the sale of fossil fuel-powered cars in the next decade.

With technological advances, the fastest commercial charger can charge up an EV in no less than 30 minutes. While this might be a major improvement over the 8-hour charge cycles of a typical home-based charger, it still needs to be improved for large-scale adoption of EVs.

Sustainable Water Solutions: UT Austin’s Filter System Aims to Transform Global Access

How can clean drinking water be produced in the simplest most cost-effective way possible? This is what a recent study published in Nature Sustainability hopes to find out as an international team of researchers led by The University of Texas at Austin (UT Austin) have developed a novel method for producing clean drinking water using only a syringe and a hydrogel filter. This study holds the potential to develop cheaper and simpler methods for producing clean drinking water for individuals around the world.

“The pressing concern of particle-polluted water, particularly in remote and underdeveloped regions where people frequently rely on contaminated water sources for consumption, demands immediate attention and recognition,” said Dr. Guihua Yu, who is a professor of materials science in the Walker Department of Mechanical Engineering at UT Austin and a co-author on the study. “Our system, with its high efficiency in removing diverse types of particles, offers an attractive yet practical solution in improving freshwater availability.”

For the study, the researchers developed their water purification system that incorporates a biodegradable hydrogel filter capable of removing particles as small as approximately 10 nanometers (0.0000003937 inches) from water that is injected into the hydrogel using a syringe. Once injected, the water passes through the hydrogel and into any drinking or storage water apparatus. Along with filtering out particles at 10 nanometers, the researchers also noted the filter efficiency rate is 100 percent, both of which surpass commercially available filters. For context, the researchers note that commercial filter efficiency rates for particles larger than 10 nanometers are approximately 40 percent and 80 percent, respectively. Additionally, the device can be scaled at various sizes and is reusable, resulting in both reduced cost and environmental impact.

Innovative silicon nanochip can reprogram biological tissue in living body

Year 2021 Biocomputing is the future for the biological singularity because we could control all inputs and outputs of our bodies even evolve them eventually.


A silicon device that can change skin tissue into blood vessels and nerve cells has advanced from prototype to standardized fabrication, meaning it can now be made in a consistent, reproducible way. As reported in Nature Protocols, this work, developed by researchers at the Indiana University School of Medicine, takes the device one step closer to potential use as a treatment for people with a variety of health concerns.

The technology, called tissue nanotransfection, is a non-invasive nanochip device that can reprogram tissue function by applying a harmless electric spark to deliver specific genes in a fraction of a second. In laboratory studies, the device successfully converted into to repair a badly injured leg. The technology is currently being used to reprogram tissue for different kinds of therapies, such as repairing caused by stroke or preventing and reversing nerve damage caused by diabetes.

“This report on how to exactly produce these tissue nanotransfection chips will enable other researchers to participate in this new development in ,” said Chandan Sen, director of the Indiana Center for Regenerative Medicine and Engineering, associate vice president for research and Distinguished Professor at the IU School of Medicine.

Targeting of multiple tumor-associated antigens by individual T cell receptors during successful cancer immunotherapy

Year 2023 Super tcells found in people that defeated cancer face_with_colon_three Basically tcells naturally eat cancer this therapy could lead to boosting the percentage of success rates in battling cancer.


Detailed characterization of the recognition and activation characteristics of T cells from successful therapy against melanoma unveils that individual T cells recognize multiple tumor-associated antigens simultaneously; elicitation or engineering of such “multipronged” T cells may be an effective means of enhancing the efficacy of T cell cancer therapy.

Fast-charging lithium battery seeks to eliminate ‘range anxiety’

A team in Cornell Engineering created a new lithium battery that can charge in under five minutes – faster than any such battery on the market – while maintaining stable performance over extended cycles of charging and discharging.

The breakthrough could alleviate “range anxiety” among drivers who worry electric vehicles cannot travel long distances without a time-consuming recharge.

“Range anxiety is a greater barrier to electrification in transportation than any of the other barriers, like cost and capability of batteries, and we have identified a pathway to eliminate it using rational electrode designs,” said Lynden Archer, Cornell’s James A. Friend Family Distinguished Professor of Engineering and dean of Cornell Engineering, who oversaw the project. “If you can charge an EV battery in five minutes, I mean, gosh, you don’t need to have a battery that’s big enough for a 300-mile range. You can settle for less, which could reduce the cost of EVs, enabling wider adoption.”

These hafnia molecules could pave the way for next-gen memory devices

For the past decade, researchers have been exploring hafnia’s ferroelectric properties, particularly in a crystal phase where it exhibits electric polarization.


To revolutionize high-performance computing, scientists and engineers are making strides in harnessing the potential of hafnium oxide, commonly known as hafnia. The latest study outlines processes for manipulating hafnia, aiming to pave the way for the next generation of computing memory.

For the past decade, researchers have explored hafnia’s ferroelectric properties, particularly in a crystal phase exhibiting electric polarization.

“Hafnia is a very exciting material because of its practical applications in computer technology, especially for data storage,” explained Singh, an assistant professor in the Department of Mechanical Engineering at the University of Rochester, in a press release. Unlike current magnetic forms of memory that are slow, energy-intensive, and inefficient, ferroelectric memory offers non-volatility, retaining values even when powered off.

Study probes unexplored combination of three chemical elements for superconductivity

Skoltech researchers and their colleagues from MIPT and China’s Center for High Pressure Science and Technology Advanced Research have computationally explored the stability of the bizarre compounds of hydrogen, lanthanum, and magnesium that exist at very high pressures. In addition to matching the various three-element combinations to the conditions at which they are stable, the team discovered five completely new compounds of hydrogen and either magnesium or lanthanum only.

Published in Materials Today Physics, the study is part of the ongoing search for room-temperature superconductors, the discovery of which would have enormous consequences for power engineering, transportation, computers and more.

“In the previously unexplored system of hydrogen, lanthanum, and magnesium, we find LaMg3H28 to be the ‘warmest’ superconductor. It loses below −109°C, at about 2 million atmospheres—not a record, but not bad at all either,” the study’s principal investigator, Professor Artem R. Oganov of Skoltech, commented.

/* */