Toggle light / dark theme

The human body can be genetically inclined to attack its own cells, destroying the beta cells in the pancreas that make insulin, which helps convert sugar into energy. Called Type 1 diabetes, this disorder can occur at any age and can be fatal if not carefully managed with insulin shots or an insulin pump to balance the body’s sugar levels.

But there may be another, personalized option on the horizon, according to Xiaojun “Lance” Lian, associate professor of biomedical engineering and biology at Penn State. For the first time, Lian and his team converted human embryonic stem cells into beta cells capable of producing insulin using only small molecules in the laboratory, making the process more efficient and cost-effective.

Stem cells can become other cell types through signals in their environment, and some mature cells can revert to stem cells—induced pluripotency. The researchers found that their approach worked for human embryonic and induced pluripotent stem cells, both derived from federally approved stem cell lines. According to Lian, the effectiveness of their approach could reduce or eliminate the need for human embryonic stem cells in future work. They published their results today (Aug. 26) in Stem Cell Reports.

What do you do at different times in the day? What do you eat? How do you interact with your neighbors? These are some of the questions that biologists would love to ask communities of microbes, from those that live in extreme environments deep in the ocean to those that cause chronic infections in humans. Now, a new technique developed at Caltech can answer these questions by surveying gene expression across a population of millions of bacterial cells while still preserving the cells’ positions relative to one another.

The technique can be used to understand the wide variety of microbial communities on our planet, including the microbes that live within our gut and influence our health as well as those that colonize the roots of plants and contribute to soil health, to name a few.

The technique was developed at Caltech by Daniel Dar, a former postdoctoral scholar in the laboratory of Dianne Newman, Gordon M. Binder/Amgen Professor of Biology and Geobiology and executive officer for biology and biological engineering, and by Dr. Nina Dar, a former senior research technician in the laboratory of Long Cai, professor of biology and biological engineering. Daniel Dar is now an assistant professor at the Weizmann Institute of Science in Israel. A paper describing the research appears on August 12 in the journal Science.

I will always remember the moments around our first sampling attempt. Longtime friend (and Sampling System Chief Engineer) Louise Jandura and I were in the operations area awaiting the next data downlink. It was “so far, so good” with our earlier morning results showing we had achieved a full-depth borehole. Other members of the team began to filter in as images of the sealed sample tube came up on the ops room monitors. We were all starting to get that feeling you can get in this business when a big milestone comes together because, at first look, it appeared to be our first cored sample. But within minutes, the team noted that the volume probe indicated no sample was in the tube, and we quickly switched to problem-solving mode – once again trying to solve another problem tossed our way from the surface of Mars.

Our team has been working hard over the last 12 days to both ensure we have adequately assessed the data from the first coring attempt and also developed a solid plan forward. After further review of the engineering and imaging data, our final conclusion is the same as our initial assessment: The rock simply wasn’t our kind of rock.

The Sampling and Caching System aboard the rover performed as expected – quite well, as a matter of fact. However, the rock we chose for this first effort did not. The act of coring into it resulted in the rock breaking apart into powder and small fragments of material, which were not retained in the tube due to their size. Although we had successfully acquired over 100 cores in a range of different test rocks on Earth, we had not encountered a rock in our test suite that behaved in quite this manner.

Artificial gravity for spaceflight is a concept older than spaceflight itself, but we’ve only ever seen one small scale test ever flown in space. However decades of research have been performed to show that the human body can adapt to the conditions required for rotating artificial gravity. This shows that it’s an engineering problem that likely solvable for interested parties who want to spend the time, effort and money creating the classic rotating space stations from Science Fiction.

Here’s a couple of papers which were heavily referenced in researching this.
https://ntrs.nasa.gov/api/citations/19720019454/downloads/19720019454.pdf.
https://ntrs.nasa.gov/api/citations/19730003384/downloads/19730003384.pdf.

The Voyager space station video is from the Gateway Foundation.
https://www.youtube.com/channel/UCfq9IoUJBIKORP6Q0Zp4dIg.

Intro and End segments by Concodroid and Eclipso.

Sun, Jul 11


This event is part of Summer Science 2021.

The ExoMars rover is due to launch in 2,022 and will travel across Oxia Planum on Mars drilling for signs of life.

Join Professor John Bridges of the University of Leicester and colleagues to explore the advanced engineering and UK led science behind this exciting mission, and how researchers hope to check if there was once ancient life on Mars.

3D printed rockets save on up front tooling, enable rapid iteration, decrease part count, and facilitate radically new designs. For your chance to win 2 seats on one of the first Virgin Galactic flights to Space and support a great cause, go to https://www.omaze.com/veritasium.

Thanks to Tim Ellis and everyone at Relativity Space for the tour!
https://www.relativityspace.com/
https://youtube.com/c/RelativitySpace.

Special thanks to Scott Manley for the interview and advising on aerospace engineering.
Check out his channel: https://www.youtube.com/user/szyzyg.

▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
References:
Benson, T. (2021). Rocket Parts. NASA. — https://ve42.co/RocketParts.

Boen, B. (2009). Winter Wonder: Rocket Icicles. NASA. — https://ve42.co/EngineIcicles.

Hall, N. (2021). Rocket Thrust Equation. NASA. — https://ve42.co/RocketEqn.

This is interesting. 😃


A new discovery in rats shows that the brain responds differently in immersive virtual reality environments versus the real world. The finding could help scientists understand how the brain brings together sensory information from different sources to create a cohesive picture of the world around us. It could also pave the way for “virtual reality therapy” for learning and memory-related disorders ranging including ADHD, Autism, Alzheimer’s disease, epilepsy and depression.

Mayank Mehta, PhD, is the head of W. M. Keck Center for Neurophysics and a professor in the departments of physics, neurology, and electrical and computer engineering at UCLA. His laboratory studies a brain region called the hippocampus, which is a primary driver of learning and memory, including spatial navigation. To understand its role in learning and memory, the hippocampus has been extensively studied in rats as they perform spatial navigation tasks.

When rats walk around, neurons in this part of the brain synchronize their electrical activity at a rate of 8 pulses per second, or 8 Hz. This is a type of brain wave known as the “theta rhythm,” and it was discovered more than six decades ago.

Laser mining would allow for a no explosive option and not need huge machines increasing output as well. Also lasers could make more precise cuts rather than blades which would never get dull.


The application of the “Graduated Optical Colimator” (GOC) for the mining industry consists of a one-kilowatt optical power fiber laser to selectively spall igneous geological formations containing narrow veins of precious metals.

Merger said the prototype addresses key issues like mining using less explosives, chemicals and waste.

“We’ve been working at this problem for five or six years now – and we’ve discovered that a lot of laboratory research has been done in the private sector and in the government sector,” Gary Mladjan, Merger Mines’ VP, engineering and technology told MINING.COM.

3D printed rockets save on up front tooling, enable rapid iteration, decrease part count, and facilitate radically new designs. For your chance to win 2 seats on one of the first Virgin Galactic flights to Space and support a great cause, go to https://www.omaze.com/veritasium.

Thanks to Tim Ellis and everyone at Relativity Space for the tour!
https://www.relativityspace.com/
https://youtube.com/c/RelativitySpace.

Special thanks to Scott Manley for the interview and advising on aerospace engineering.
Check out his channel: https://www.youtube.com/user/szyzyg.

▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
References:
Benson, T. (2021). Rocket Parts. NASA. — https://ve42.co/RocketParts.

Boen, B. (2009). Winter Wonder: Rocket Icicles. NASA. — https://ve42.co/EngineIcicles.

Hall, N. (2021). Rocket Thrust Equation. NASA. — https://ve42.co/RocketEqn.

Do you agree?


In the future, when space agencies start to send human crews deep into space to explore or terraform distant worlds, we may need to send them off with extra goodies to keep morale high.

When astronauts are feeling lonely, depressed, traumatized, or just generally bad, a little pick-me-up in the form of psychedelic mushrooms could help, mycologist Paul Stamets suggested to Scientific American. It’s an odd idea, but as the body of evidence continues to grow that psilocybin — the active ingredient in shrooms — may have myriad mental health benefits, it may be an odd idea worth considering.

“Under carefully controlled conditions, our astronauts [being] able to take psilocybin in space and look at the universe and not feel distant and alone but feel like they’re part of this giant consciousness will give them a better frame of mind — psychologically, emotionally — to work with other astronauts and stay on mission,” Stamets told the magazine. “I feel that isolation, loneliness, and depression are going to be major issues that astronauts face.”