Toggle light / dark theme

A first-of-its-kind cyberattack on the U.S. grid created blind spots at a grid control center and several small power generation sites in the western United States, according to a document posted yesterday from the North American Electric Reliability Corp.

The unprecedented cyber disruption this spring did not cause any blackouts, and none of the signal outages at the “low-impact” control center lasted for longer than five minutes, NERC said in the “Lesson Learned” document posted to the grid regulator’s website.

But the March 5 event was significant enough to spur the victim utility to report it to the Department of Energy, marking the first disruptive “cyber event” on record for the U.S. power grid (Energywire, April 30).

At the Battery Show North America 2019, AKASOL will present a wide portfolio of new solutions to the battery community. The company’s flagship product is the new high-energy lithium-ion battery AKASystemAKM CYC, which has entered serial development for the battery module and system.

Header_AKM_CYC_1440x499.f581f0c180a846bc72c53af61c6d4650

The AKAModule CYC achieves energy density of 221 Wh/kg with liquid-cooled battery modules that are scalable and can be integrated in various system designs at the pack level.

The present essay is the third of a group of four communications originally intended for publication in Infinite Energy at Dr. Eugene Mallove’s invitation, and dedicated to the scientific, technological and political problems presented by exotic flight and lift systems in particular those relating to possible control of gravity. We examine the main lines of research into the nature of gravity over the past 6 decades, with a focus on Einstein’s General Relativity and General Theory of Gravitation, quantum-mechanical models of the graviton, Geometrodynamics and the ZPE theories, Van Flandern’s model of gravity, which are contrasted to Aspden’s theory of a dynamic Aetherometric Theory of Synchronicity, Vol. II AS3-II.9.

In the mid-1800’s to the early 1900’s Tesla file for more than 110 patents in varying technologies. From his magnifying transmitter, than uses an air coil or vortex to generate massive voltages, to wireless transmissions of power which Tesla used to prove transmission of data, power, and even lighting a layer of the strata as early as 1900. For this reason many consider Nikola Tesla to be one of the most brilliant scientists the world have ever seen.

Tesla’s dynamic theory of gravity explains the relation between gravity and electromagnetics in the same field. This was due to the presence of aether, also known as ether, which is a space-filling medium that is necessary for the propagation of forces either through electromagnetic or gravitational in nature. In plain English, Aether is the medium necessary for any exchange on these levels. Also, Aether was removed from theory in modern physics and was replaced with more abstract models. In looking at Tesla’s ideas and results; it appears that modern physics is wrong.

In the late 1800’s Tesla presented his Dynamic Theory of Gravity, which was a model over matter, Aether, and energy. Tesla’s version of this medium is closer to the gas theory and has extreme elasticity and a very high permeability. He also felt that Aether was much more common and filled all of the space.

Superunification underwent a major paradigm shift in 1984 when eleven-dimensional supergravity was knocked off its pedestal by ten-dimensional superstrings. This last year has witnessed a new shift of equal proportions:

Perturbative ten-dimensional superstrings have in their turn been superseded by.

A new non-perturbative theory called {\it $M$-theory}, which describes supermembranes and superfivebranes, which subsumes all five consistent string theories and whose low energy limit is, ironically, eleven-dimensional supergravity.

A new unified theory for heat transport accurately describes a wide range of materials – from crystals and polycrystalline solids to alloys and glasses – and allows them to be treated in the same way for the first time. The methodology, which is based on the Green-Kubo theory of linear response and concepts from lattice dynamics, naturally accounts for quantum mechanical effects and thus allows for the predictive modelling of heat transport in glasses at low temperature – a feat never achieved before, say the researchers who developed it. It will be important for better understanding and designing heat transporting devices in a host of applications, from heat management in high-power electronics, batteries and photovoltaics to thermoelectric energy harvesting and solid-state cooling. It might even help describe heat flow in planetary systems.

“Heat transport is the fundamental mechanism though which thermal equilibrium is reached,” explains Stefano Baroni of the Scuola Internazionale Superiore di Studi Avanzati (SISSA) in Trieste, Italy, who led this research effort. “It can also be thought of as the most fundamental manifestation of irreversibility in nature – as heat flows from warm areas in the same system to cooler ones as time flows from the past to the future (the ‘arrow of time’). What is more, many modern technologies rely on our ability to control heat transport.”

However, despite its importance, heat transport is still poorly understood and it is difficult to simulate the heat transport of materials because of this lack of understanding. To overcome this knowledge gap, researchers employ various simulation techniques based on diverse physical assumptions and approximations for different classes of material – crystals on one hand and disordered solids and liquids on the other.