Toggle light / dark theme

China’s economy — the 2nd-largest in the world — is teetering on the brink of disaster.

Since this spring, Beijing has canceled initial public offerings, fined tech companies billions for antitrust violations, forcibly shut down China’s entire for-profit education industry, and sent CEOs running for the exits to avoid the government’s ire. Even more dire, the Chinese megadeveloper Evergrande recently started missing payments on its more than $300 billion in debt, shaking global markets. The convulsions have woken the world up to a startling new possibility — that Beijing may be willing to allow some of its private corporate behemoths to collapse in a bid to reshape the economic model that made China a superpower.

The upheaval, spanning multiple industries and vast swaths of the country, is the result of one giant issue: China’s inability to borrow or buy its way out of its current economic crisis. For decades, the country relied on cheap labor and eye-popping amounts of debt, handed out by government-owned banks, to fuel economic growth — pouring money into massive apartment developments, factories, bridges, and other projects at lightning speed. Now the country needs people to actually use, and pay for, everything that’s been built. But the bulk of China’s population lacks the income needed to shift the economy from one driven by state investments to one sustained by consumer spending.

Visit Our Parent Company EarthOne For Sustainable Living Made Simple ➤
https://earthone.io/

Progress has an accelerating rate of change due to the compounding effect of these technologies, in which they will enable countless more from 3D printing, autonomous vehicles, blockchain, batteries, remote surgeries, virtual and augmented reality, robotics – the list can go on and on.

These devices in turn will lead to mass changes in society from energy generation, monetary systems, space colonization and much more! All these topics and then some will be covered in videos of their own in the future.

In this video we will be discussing automation, which is often confused with being the ‘technological revolution’ in it of itself as it is what the mainstream focuses on, and for good reason, as how we handle automation will determine the trajectory or collective future takes.

The COVID-19 pandemic, caused by SARS-CoV-2, continues to rage in many countries, straining health systems and economies. Vaccines protect against severe disease and death and are considered central to ending the pandemic. COVID-19 vaccines (and SARS-CoV-2 infection) elicit antibodies that are directed against the viral spike (S) protein and neutralize the virus. However, the emergence of SARS-CoV-2 variants with S protein mutations that confer resistance to neutralization might compromise vaccine efficacy[1]. Furthermore, emerging viral variants with enhanced transmissibility, likely due to altered virus-host cell interactions, might rapidly spread globally. Therefore, it is important to investigate whether emerging SARS-CoV-2 variants exhibit altered host cell interactions and resistance against antibody-mediated neutralization.


Cellular & Molecular Immunology (2021) Cite this article.

Track code: TD-3

Abstract:
Solar Sails are at the same stage of engineering development as electric motors were in the 1830’s. Each attribute of solar flux has been examined in isolation, such as photon, proton, plasma, and electrodynamic systems. This talk recommends designing a simple baseline system that converges multiple propulsion methods into optimized systems, as is currently done with electric motors. Many convergences can come from this solution space. Once a baseline design is created, AI genetic algorithms can “flight test” and refine the designs in simulation to adjust proportions and geometry. Once a base design is refined, a second AI evolution pass would design fleet systems that flock like birds to optimize performance. These could fly as a protective shield around Mars crewed fleets, provide space based solar power, deploy rapid reaction probes for interstellar comets, and be used in NEO asteroid mining. In the long term, fleets of solar energy management vehicles can provide orbital Carrigan event protection and Martian solar wind protection for terraforming. This talk is also a case study in how technology revolutions happen, and how to accelerate the creation and democratization of technical solutions.

From the 24th Annual International Mars Society Convention, held as a Virtual Convention worldwide on the Internet from October 14–17, 2021. The four-day International Mars Society Convention, held every year since 1,998 brings together leading scientists, engineers, aerospace industry representatives, government policymakers and journalists to talk about the latest scientific discoveries, technological advances and political-economic developments that could help pave the way for a human mission to the planet Mars.

Conference Papers and some presentations will be available on www.MarsPapers.org.

Alfredo Munoz — Digital Twins of Martian Cities as a new frontier for Space Analogs.

From the 24th Annual International Mars Society Convention, held as a Virtual Convention worldwide on the Internet from October 14–17, 2021. The four-day International Mars Society Convention, held every year since 1,998 brings together leading scientists, engineers, aerospace industry representatives, government policymakers and journalists to talk about the latest scientific discoveries, technological advances and political-economic developments that could help pave the way for a human mission to the planet Mars.

Conference Papers and some presentations will be available on www.MarsPapers.org.

For more information on the Mars Society, visit our website at www.MarsSociety.org.

Title: A data analysis of the first hermetic seal of SAM–a hi-fidelity, hybrid physicochemical and bioregenerative human habitat analog at the Biosphere 2

Track Code: AM-8

Abstract:
SAM is a Space Analog for the Moon and Mars. This hi-fidelity, hermetically sealed habitat analog and research center is composed of a living quarters for four crew, workshop, dual airlocks, and greenhouse with temperature, humidity, and carbon dioxide level controls. SAM incorporates a half acre indoor/outdoor Mars yard with scaled crater, synthetic lava tube, and gravity offset rig for use in sealed pressure suits. SAM leverages the world class expertise and facilities at the University of Arizona’s Biosphere 2 and the Controlled Environment Agriculture Center (CEAC). As with other analogs, SAM welcomes research teams from around the world in an effort to inform near-future, long-duration human habitation of the Moon and Mars. With the close of June 2,021 a six months refurbishing of the 1987 prototype for the Biosphere 2 Test Module was completed. A crew of five were sealed inside for four hours. This was the first hermetic seal of this iconic vessel in three decades. The paper summarizes the data and findings pertaining to this closure, with review of the internal atmospheric pressure, CO2, O2, humidity and temperature data, including the effect of activation of a CO2 scrubber built by Paragon SDC for NASA.

From the 24th Annual International Mars Society Convention, held as a Virtual Convention worldwide on the Internet from October 14–17, 2021. The four-day International Mars Society Convention, held every year since 1,998 brings together leading scientists, engineers, aerospace industry representatives, government policymakers and journalists to talk about the latest scientific discoveries, technological advances and political-economic developments that could help pave the way for a human mission to the planet Mars.

Artificial intelligence is set to revolutionize the world, empowering those nations that fully harness its potential. The U.S. is still seen as the world AI leader, but China is catching up. The race is central to the U.S.-China rivalry and a critical facet of the economic and military competition that will define the decade.

#China2030 #AI #BloombergQuicktake.
——-
Like this video? Subscribe: https://www.youtube.com/Bloomberg?sub_confirmation=1
Become a Quicktake Member for exclusive perks: https://www.youtube.com/bloomberg/join.

QuickTake Originals is Bloomberg’s official premium video channel. We bring you insights and analysis from business, science, and technology experts who are shaping our future. We’re home to Hello World, Giant Leap, Storylines, and the series powering CityLab, Bloomberg Businessweek, Bloomberg Green, and much more.

Subscribe for business news, but not as you’ve known it: exclusive interviews, fascinating profiles, data-driven analysis, and the latest in tech innovation from around the world.

Rearing animals for human consumption and clearing land to grow their feed causes untold environmental damage. Mass-producing plant-based proteins could be equally unsustainable. New technologies are being developed to grow pork, beef and chicken-like tissue in the lab, but can output be upscaled enough to make a real difference?

#agriculture #foodproduction

► To learn more, visit our website — https://channels.ft.com/en/foodrevolution/
► Watch more videos from this series here — https://bit.ly/30WT7qx
► Check out our Community tab for more stories on the economy.
► Listen to our podcasts: https://www.ft.com/podcasts.
► Follow us on Instagram: https://www.instagram.com/financialtimes

We are living in a time when we can see what needs to be done, but the industrial legacy of the last century has such power invested, politically and in the media, and so much money at its disposal due to the investors who have too much to lose to walk away, and so they throw good money after bad to desperately try to save their stranded assets.

Well, the next decade will bring new technologies which will rupture the business models of the old guard, tipping the balance on their huge economies of scale, which will quickly disintegrate their advantage before consigning them to history, and these new ways of doing things will be better for us and the environment, and cheaper than every before. Just look at how the internet and the smart phone destroyed everything from cameras to video shops to taxis and the very high street itself.

The rest is not far behind and it all holds the opportunity to mend the damage we have done.

If you want to know more about what lies ahead, check out this video.

(2021). Nuclear Technology: Vol. 207 No. 8 pp. 1163–1181.


Focusing on nuclear engineering applications, the nation’s leading cybersecurity programs are focused on developing digital solutions to support reactor control for both on-site and remote operation. Many of the advanced reactor technologies currently under development by the nuclear industry, such as small modular reactors, microreactors, etc., require secure architectures for instrumentation, control, modeling, and simulation in order to meet their goals. 1 Thus, there is a strong need to develop communication solutions to enable secure function of advanced control strategies and to allow for an expanded use of data for operational decision making. This is important not only to avoid malicious attack scenarios focused on inflicting physical damage but also covert attacks designed to introduce minor process manipulation for economic gain. 2

These high-level goals necessitate many important functionalities, e.g., developing measures of trustworthiness of the code and simulation results against unauthorized access; developing measures of scientific confidence in the simulation results by carefully propagating and identifying dominant sources of uncertainties and by early detection of software crashes; and developing strategies to minimize the computational resources in terms of memory usage, storage requirements, and CPU time. By introducing these functionalities, the computers are subservient to the programmers. The existing predictive modeling philosophy has generally been reliant on the ability of the programmer to detect intrusion via specific instructions to tell the computer how to detect intrusion, keep log files to track code changes, limit access via perimeter defenses to ensure no unauthorized access, etc.

The last decade has witnessed a huge and impressive development of artificial intelligence (AI) algorithms in many scientific disciplines, which have promoted many computational scientists to explore how they can be embedded into predictive modeling applications. The reality, however, is that AI, premised since its inception on emulating human intelligence, is still very far from realizing its goal. Any human-emulating intelligence must be able to achieve two key tasks: the ability to store experiences and the ability to recall and process these experiences at will. Many of the existing AI advances have primarily focused on the latter goal and have accomplished efficient and intelligent data processing. Researchers on adversarial AI have shown over the past decade that any AI technique could be misled if presented with the wrong data. 3 Hence, this paper focuses on introducing a novel predictive paradigm, referred to as covert cognizance, or C2 for short, designed to enable predictive models to develop a secure incorruptible memory of their execution, representing the first key requirement for a human-emulating intelligence. This memory, or self-cognizance, is key for a predictive model to be effective and resilient in both adversarial and nonadversarial settings. In our context, “memory” does not imply the dynamic or static memory allocated for a software execution; instead, it is a collective record of all its execution characteristics, including run-time information, the output generated in each run, the local variables rendered by each subroutine, etc.