Toggle light / dark theme

California has hit record-breaking milestones in renewable electricity generation, showing that wind, water and solar are ready to cover our electricity needs.

By Mark Z. Jacobson

Something spectacular is happening in the Golden State. California—the fifth-largest economy in the world—has experienced a record-breaking string of days in which the combined generation of wind, geothermal, hydroelectric and solar electricity has exceeded demand on the main electricity grid for anywhere from 15 minutes to 9.25 hours per day. These clean, renewable electricity sources are collectively known as wind-water-solar (WWS) sources.

ARMONK, N.Y., April 30, 2024 — Today, IBM (NYSE: IBM) has announced an agreement with RIKEN, a Japanese national research laboratory, to deploy IBM’s next-generation quantum computer architecture and best-performing quantum processor at the RIKEN Center for Computational Science in Kobe, Japan. It will be the only instance of a quantum computer co-located with the supercomputer Fugaku.

This agreement was executed as part of RIKEN’s existing project, supported by funding from the New Energy and Industrial Technology Development Organization (NEDO), an organization under Japan’s Ministry of Economy, Trade and Industry (METI)’s “Development of Integrated Utilization Technology for Quantum and Supercomputers” as part of the “Project for Research and Development of Enhanced Infrastructures for Post 5G Information and Communications Systems.” RIKEN has dedicated use of an IBM Quantum System Two architecture for the purpose of implementation of its project. Under the project RIKEN and its co-PI SoftBank Corp., with its collaborators, University of Tokyo, and Osaka University, aim to demonstrate the advantages of such hybrid computational platforms for deployment as services in the future post-5G era, based on the vision of advancing science and business in Japan.

In addition to the project, IBM will work to develop the software stack dedicated to generating and executing integrated quantum-classical workflows in a heterogeneous quantum-HPC hybrid computing environment. These new capabilities will be geared towards delivering improvements in algorithm quality and execution times.

Nuclear energy has long been regarded as a next-generation energy source, and major countries around the world are competing to secure cutting-edge technologies by leveraging the high economic efficiency and sustainability of nuclear power. However, uranium, which is essential for nuclear power generation, has serious implications for both soil ecosystems and human health.

Despite being a key radioactive material, uranium poses significant health risks due to its chemical toxicity to the kidneys, bones, and cells. As a result, both the U.S. Environmental Protection Agency and the World Health Organization recommend allowing and advocating for uranium concentrations in wastewater to be below 30 μg/L.

The Korea Institute of Civil Engineering and Building Technology (KICT) has conducted research on a nano-material-based adsorption process to efficiently remove uranium wastewater extracted from actual radioactive-contaminated soil. They have also proposed its applicability to prevent secondary environmental pollutions.

The platform’s ability to interface with a variety of data sources and observability tools makes it a versatile solution for businesses operating in diverse IT environments, whether on-premises, in the cloud, or in hybrid settings. By serving as an intelligence layer that rationalizes data from multiple observability and infrastructure sources, Flip AI simplifies the workload for IT operations teams and supports more efficient operational practices.

This innovative use of LLMs for operational efficiency in IT environments presents a significant advancement in observability, offering enterprises a powerful tool to enhance system reliability and performance while reducing the economic impact of downtime.

As LLMs continue to evolve, their integration into observability tools is transforming the landscape of infrastructure and workload observability. The immediate benefits of improved performance monitoring and security are just the beginning.

Tesla CEO Elon Musk has arrived in Beijing on an unannounced trip, where he is expected to discuss the rollout of Full Self-Driving (FSD) software and permission to transfer data overseas, according to a person with knowledge of the matter.

Chinese state media reported that he met Premier Li Qiang in Beijing, during which Mr Li told Mr Musk that Tesla’s development in China could be regarded as a successful example of US-China economic and trade cooperation.

“Honoured to meet with Premier Li Qiang. We have known each other now for many years, since early Shanghai days,” Mr Musk posted on social media platform X, as he appeared in a picture with the premier.

Engineers at Georgia Tech have designed a process that converts carbon dioxide removed from the air into useful raw material that could be used for new plastics, chemicals, or fuels.

Their approach dramatically reduces the cost and energy required for these (DAC) systems, helping improve the economics of a process the researchers said will be critical to addressing .

The key is a new kind of catalyst and electrochemical reactor design that can be easily integrated into existing DAC systems to produce useful carbon monoxide (CO) gas. It’s one of the most efficient such design ever described in , according to lead researcher Marta Hatzell and her team. They have published the details in Energy & Environmental Science.

Thsi is a year old. But at 27 minutes David gets asked a couple fo “when” questions.


Dr. David Sinclair presents the progress of epigenetic reprogramming and rejuvenation in this video. He’s also answering questions on when he thinks the rejuvenation therapy be available in the Q\&A session at the end of the presentation.

00:54 Presentation.

The LASSIE project is preparing for a time when people and robots explore space together.

Learn more about how the #space economy can improve life on #Earth from our new insight report, ‘Space: The $1.8 Trillion Opportunity for Global Economic Growth’:


Space is approaching a new frontier. The space economy is expected to be worth $1.8 trillion by 2035 as satellite and rocket-enabled technologies become increasingly prevalent, according to a new report.

Already, space-enabled technologies drive everything from weather forecasts to the increasingly ubiquitous smart gadgets such as smart watchs. Yet space technologies are also delivering benefits to a wider range of stakeholders, with industries such as retail, consumer goods and lifestyle; food and beverages; supply chains and transport; and disaster mitigation all set to benefit from space innovations.