Toggle light / dark theme

We had a wonderful group of international and interdisciplinary speakers at Saint Mary’s University on March 31 to April 1, 2017. They all took time out from their very busy schedules to come to Halifax to discuss robots and artificial intelligence at the Cyborg Futures Workshop. Academics from literary theory, digital culture, anthropology, sociology, environmental studies, robotics, and evolutionary biology, along with students and the public, convened for a lively discussion about technologies that are impacting us all.

This workshop is part of a larger SSHRC-funded project–Where Science Meets Fiction: Social Robots and the Ethical Imagination–that is about shifting the conversation about robots and AI, which has been animated by fiction but dominated in the real world by the military and industry. Opening the discussion up to wider social and cultural contexts–from the impact of technology on human relations; to non-human animals, the environment and trash; to racism, imperialism and misogyny; to automation, labour and capitalism; to killer robots and the military; to the problematic collapse of science and fiction—this workshop considered both the infrastructure currently being laid that is forcing us down a troubling path and imaginative alternatives to it. What follows cannot possibly do justice to the richness and complexity of the talks, so please click on the hyperlinks to listen to them.

Human Cyborg — We’ve all seen Cyborgs in Hollywood blockbusters. But it turns out these fictional beings aren’t so far-fetched.

Human Cyborg (2020)
Director: Jacquelyn Marker.
Writers: Kyle McCabe, Christopher Webb Young.
Stars: Justin Abernethy, Robert Armiger, John Donoghue.
Genre: Documentary.
Country: United States.
Language: English.
Also Known As: Cyborg Revolution.
Release Date: 2020 (United States)

Synopsis:
We’ve all seen Cyborgs in Hollywood blockbusters. But it turns out these fictional beings aren’t so far-fetched. In fact, this episode features a true-to-life cyborg, who at four months of age, was the youngest American to be outfitted with a myoelectric hand. And at one ground-breaking engineering facility, engineers are developing biotechnologies that can even further enhance high-tech like this by giving mechanical prosthetics something incredible: the physical sensation of touch!

Other engineering firms are gearing up powerful exoskeletons that both rehabilitate and enhance the power of the human body… improving the lives of those with paralysis and transforming the work force.

HUMANS in the next 100 years could be part-machine, part-flesh creatures with brain chips and bionic limbs and organs in a vision of “cyborgs” once described by Elon Musk.

Men and women born around 2100 could live in a world very different to ours as humans may be totally connected to the internet and meshed together with artificial intelligence.

Mobile phones would no longer be needed — as everything you now do with your smartphone will now be done with a chip in your brain.

The sense of touch may soon be added to the virtual gaming experience, thanks to an ultrathin wireless patch that sticks to the palm of the hand. The patch simulates tactile sensations by delivering electronic stimuli to different parts of the hand in a way that is individualized to each person’s skin.

Developed by researchers at City University of Hong Kong (CityU) with collaborators and described in the journal Nature Machine Intelligence (“Encoding of tactile information in hand via skin-integrated wireless haptic interface”), the patch has implications beyond virtual gaming, as it could also be used for robotics surgery and in prosthetic sensing and control.

‘Haptic’ gloves, that simulate the sense of touch, already exist but are bulky and wired, hindering the immersive experience in virtual and augmented reality settings. To improve the experience, researchers led by CityU biomedical engineer Yu Xinge developed an advanced, wireless, haptic interface system called ‘WeTac’.

Recently, a research team from Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, proposed a bionic quadruped soft thin-film microrobot actuated by magnetic fields with a mass of only 41 mg, which promises to be applied to stomach examination and treatment. Researchers realized the multimodal locomotion control of the soft microrobot in magnetic fields and the grasping and transportation of micro-objects by the soft microrobot.

The new paper, published in Cyborg and Bionic Systems, details the process of making the and the magnetization process, presents the mechanism of microrobot’s locomotion and cargo transportation, and demonstrates the microrobot transporting multiple microbeads from different locations to the target position.

Untethered microrobots have received much attention for their potential in and small-scale micromanipulation. “Due to the fact that magnetic fields are harmless to biological cells and tissues, magnetic fields are widely used to actuate microrobots for biomedical applications,” explained study author Tiantian Xu, a professor at the Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences.

Elon Musk’s company Neuralink has developed a technology that can link human brains to computers, and according to Musk, it is now ready for human testing. This groundbreaking technology has the potential to revolutionize the way we communicate and interact with machines, and could pave the way for new treatments for neurological disorders. With the announcement that Neuralink is ready for human testing, the future of human-computer integration is closer than ever before.

#neuralink #elonmusk #braincomputerinterface #humanenhancement #neurotechnology #futurismo #transhumanisme #neuroscience #innovation #technews #mindcontrol #cyborgs #neurologicaldisorders #futuretechnology #humanpotential #ai #neuralengineering #brainimplants #humanmachineinterface #brainresearch #brainwavesound

This is a clip from Technocalyps, a documentary in three parts about the exponential growth of technology and trans-humanism, made by Hans Moravec. The documentary came out in 1998, and then a new version was made in 2006. This is how the film-makers themselves describe what the movie is about:

“The accelerating advances in genetics, brain research, artificial intelligence, bionics and nanotechnology seem to converge to one goal: to overcome human limits and create higher forms of intelligent life and to create transhuman life.”

You can see the whole documentary here: https://www.youtube.com/watch?v=fKvyXBPXSbk. Or, if you’re more righteous then I am, you can order the DVD on technocalyps.com.

Research in animal models has demonstrated that stem-cell derived heart tissues have promising potential for therapeutic applications to treat cardiac disease. But before such therapies are viable and safe for use in humans, scientists must first precisely understand on the cellular and molecular levels which factors are necessary for implanted stem-cell derived heart cells to properly grow and integrate in three dimensions within surrounding tissue.

New findings from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) make it possible for the first time to monitor the functional development and maturation of cardiomyocytes—the responsible for regulating the heartbeat through synchronized —on the single-cell level using -embedded . The devices—which are flexible, stretchable, and can seamlessly integrate with living cells to create “cyborgs”—are reported in a Science Advances paper.

“These mesh-like nanoelectronics, designed to stretch and move with growing tissue, can continuously capture long-term activity within individual stem-cell derived cardiomyocytes of interest,” says Jia Liu, co-senior author on the paper, who is an assistant professor of bioengineering at SEAS, where he leads a lab dedicated to bioelectronics.

It’s a revolutionary step forward for soft robotics.

A team of scientists from Edinburgh has engineered smart electronic skin that could pave the way for soft, flexible robotic devices with a sense of touch, according to a press release by the institution published last week.

The technology could aid in breakthroughs in soft robotics introducing a range of applications, such as surgical tools, prosthetics, and devices to explore hazardous environments.


University of Edinburgh.