Toggle light / dark theme

Cool new story and video on transhumanism:


SANTA CLARA (CBS SF) –During Super Bowl 50, the world saw the Denver Broncos throttle the Carolina Panthers. The game’s MVP Von Miller dominated Cam Newton in a display of super human strength and skill.

You may not know it, but a growing number of engineers, biohackers and entrepreneurs hopes one day we’ll all be super human as well.

A bionic eye may not that far away.

“We will be able to see 100 miles with sheer accuracy we’re going to be able to see germs on each other’s bodies,” exclaimed futurist Zoltan Istvan.

Read more

A DARPA-funded research team has created a novel neural-recording device that can be implanted into the brain through blood vessels, reducing the need for invasive surgery and the risks associated with breaching the blood-brain barrier. The technology was developed under DARPA’s Reliable Neural-Interface Technology (RE-NET) program, and offers new potential for safely expanding the use of brain-machine interfaces (BMIs) to treat physical disabilities and neurological disorders.

In an article published in Nature Biotechnology, researchers in the Vascular Bionics Laboratory at the University of Melbourne led by neurologist Thomas Oxley, M.D., describe proof-of-concept results from a study conducted in sheep that demonstrate high-fidelity measurements taken from the motor cortex—the region of the brain responsible for controlling voluntary movement—using a novel device the size of a small paperclip.

This new device, which Oxley’s team dubbed the “stentrode,” was adapted from off-the-shelf stent technology—a familiar therapeutic tool for clearing and repairing blood vessels—to include an array of electrodes. The researchers also addressed the dual challenge of making the device flexible enough to safely pass through curving blood vessels, yet stiff enough that the array can emerge from the delivery tube at its destination.

Read more

Australian scientists hope that a tiny device just 3cm long and a few millimetres wide will enable paralysed patients to walk again by allowing them to control bionic limbs with the power of subconscious thought.

The new device, dubbed the “bionic spine”, is the size of a small paperclip and will be implanted in three patients at the Royal Melbourne hospital in Victoria next year. The participants will be selected from the Austin Health spinal cord unit, and will be the first humans to trial the device, which so far has only been tested in sheep.

Doctors will make a tiny cut in the neck of the patients and feed a catheter containing the bionic spine up through the blood vessels leading into the brain, until it rests on top of the motor cortex, the part of the brain where nerve impulses that initiate voluntary muscle movements come from. The catheter will then be removed, leaving the bionic spine behind.

Read more

Robots aren’t exactly known for their delicate touch, but soon, the stereotype of the non-gentle machine may change. Scientists say they have managed to develop a robot with “a new soft gripper” that makes use of a phenomenon known as electroadhesion — which is essentially the next best thing to giving robots opposable thumbs. According to EPFL scientists, these next-gen grippers can handle fragile objects no matter what their shape — everything from an egg to a water balloon to a piece of paper is fair game.

This latest advance in robotics, funded by NCCR Robotics, may allow machines to take on unprecedented roles. “This is the first time that electroadhesion and soft robotics have been combined together to grasp objects,” said Jun Shintake, a doctoral student at EPFL. Potential applications include handling food, capturing debris (both in space and at home), or even being integrated into prosthetic limbs.

Read more

The Phoenix lets paraplegic people sit, stand, and walk. It costs just $40,000. Here’s how the designers pulled it off.

In 2005, Steven Sanchez was trying to do a flip off a BMX dirt ramp when he was paralyzed from the belly button down. 11 years later, with no miracle surgery to speak of, he stands like any other tourist in line at the Vatican.

“I had this awesome robotic suit on, and nobody cared,” he says. “They just waited for me to move up like everyone else moved up.” It was a moment of incredible, touristy normalcy, provided by a bit of practice—and the Phoenix exoskeleton.

Read more