Toggle light / dark theme

In Brief:

  • A new visual implant from SecondSight may help restore useful sight in more than 6 million additional people who aren’t candidates for the company’s previous implant model.
  • Recently, there are more options being developed to restore both hearing and sight in affected patients, such technology has the potential to improve the quality of life of countless people.

Read more

Come “ask me anything” right now!!! I’m trying to answer all questions I get asked:


Hi Reddit,

Thank you for having me here. My name is Zoltan Istvan, and I’m a futurist, journalist, and science fiction writer. I’m also the 2016 Presidential candidate for the Transhumanist Party.

For the last 725 days, I have been campaigning full time to spread transhumanism and life extension policies across America and the world. While I never expected to win the US Presidency, my campaign has received a lot of attention—both good and bad—for its emphasis on radical science, technology, secularism, and futurist ideas.

The strength of spinach isn’t only in its nutrients, but also in its ability to be hacked to function as a sensor, according to researchers at the Massachusetts Institute of Technology. An MIT team used wonder-material carbon nanotubes to give the greens the ability to detect explosives and wirelessly transmit information to a mobile device.

MIT engineers applied a solution of nanoparticles to the underside of the leaves, allowing them to be taken up into the mesophyll layer where photosynthesis takes place. The embedded nanotubes then acted as sensors able to detect nitroaromatic compounds – which are often used in explosives like land mines – in the groundwater taken up by the plants’ roots.

If the chemicals are present in the water the plant is feeding from, the carbon nanotubes in the leaves emit a fluorescent signal that can be picked up with an infrared camera when a laser is shined on the leaves. The researchers hooked up such a camera to an inexpensive Raspberry Pi system and set it to email the user when the compounds were detected.

Read more

Rattling around inside a hard drive doesn’t sound like an awful lot of fun — but then, neither does death.

Both eventualities are rather difficult to imagine, but we’ll all have to give them some thought sooner rather than later. Neuroscientist and neuroengineer Randal Koene thinks it’s only going to be another 10 years before we replace parts of the brain with prosthetics.

From there, it’s just a matter of replacing each region systematically, to end up with someone whose brain is immortal and electronic. Could the last person to die have already been born?

Read more

There have been significant advances in developing new prostheses with a simple sense of touch, but researchers are looking to go further. Scientists and engineers are working on a way to provide prosthetic users and those suffering from spinal cord injuries with the ability to both feel and control their limbs or robotic replacements by means of directly stimulating the cortex of the brain.

For decades, a major goal of neuroscientists has been to develop new technologies to create more advanced prostheses or ways to help people who have suffered spinal cord injuries to regain the use of their limbs. Part of this has involved creating a means of sending brain signals to disconnected nerves in damaged limbs or to robotic prostheses, so they can be moved by thought, so control is simple and natural.

However, all this had only limited application because as well as being able to tell a robotic or natural limb to move, a sense of touch was also required, so the patient would know if something has been grasped properly or if the hand or arm is in the right position. Without this feedback, it’s very difficult to control an artificial limb properly even with constant concentration or computer assistance.

Read more

Politico: Write a transhumanist in in New York! http://www.politico.com/states/new-york/albany/story/2016/10…-in-106729 #transhumanism #Election2016 #ScienceCandidate


ALBANY — While Hillary Clinton and Donald Trump have debated issues such as immigration, gun control, and health care, neither of them has weighed in on the topic of a bill of rights for cyborgs.

Voters chagrined by that oversight do, however, have another option.

Story Continued Below

A titanium implant (blue) without a nanofiber coating in the femur of a mouse. Bacteria are shown in red and responding immune cells in yellow. Courtesy of Lloyd Miller/Johns Hopkins Medicine

In a proof-of-concept study with mice, scientists at The Johns Hopkins University show that a novel coating they made with antibiotic-releasing nanofibers has the potential to better prevent at least some serious bacterial infections related to total joint replacement surgery. A report on the study, published online the week of Oct. 24 in Proceedings of the National Academy of Sciences, was conducted on the rodents’ knee joints, but, the researchers say, the technology would have “broad applicability” in the use of orthopedic prostheses, such as hip and knee total joint replacements, as well pacemakers, stents and other implantable medical devices. In contrast to other coatings in development, the researchers report the new material can release multiple antibiotics in a strategically timed way for an optimal effect.

“We can potentially coat any metallic implant that we put into patients, from prosthetic joints, rods, screws and plates to pacemakers, implantable defibrillators and dental hardware,” says co-senior study author Lloyd S. Miller, MD, PhD, an associate professor of dermatology and orthopedic surgery at the Johns Hopkins University School of Medicine.

Read more

Today I’m announcing a $100M commitment to Kernel in an effort to enhance human intelligence and reimagine our future. Unlocking our brain is the most significant and consequential opportunity in history — and it’s time sensitive.

We’re starting to identify the mechanisms underlying neural code and make them programmable. Our biology and genetics have become increasingly programmable; our neural code is next in line. Programming our neural code will enable us to author ourselves and our existence in ways that were previously unimaginable.

I started Kernel in 2016 (read more at the Washington Post) to build the world’s first neural prosthetic for human intelligence enhancement. The investment I’m making in Kernel today will expedite the development of this prosthetic and similarly transformative neurotechnologies.

Read more

Bactéria Cyborg

Pesquisadores do Departamento de Ciência e Engenharia Biosystems (D-BSSE) da ETH Zurich em Basileia criaram um ciborgue — uma criatura híbrida que é máquina e parte organismo vivo.

Bactérias em que o crescimento pode ser totalmente controlado automaticamente por um computador. A interface entre o computador e bactérias é baseada na luz vermelha e verde. A abordagem poderia ajudar a otimizar a produção biotecnológica de moléculas.

Read more